
CS520: Introduction to Intelligent Systems Spring 2006

From Propositional Logic

Rules of Inference

α ` β

α

β

Modus Ponens

α→ β, α

β

1 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Rules of Inference

And-Elimination
α1 ∧ α2 . . . ∧ αn

αi

And-Introduction
α1, α2, . . . , αn

α1 ∧ α2 . . . ∧ αn

2 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Rules of Inference

Or-Introduction
αi

α1 ∨ α2 . . . ∨ αn

Double Negation Elimination

¬¬α

α

3 / 29



CS520: Introduction to Intelligent Systems Spring 2006

frametitleRules of Inference Unit Resolution

α ∨ β,¬β

α

Resolution

α ∨ β,¬β ∨ γ

α ∨ γ

4 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Inference in First-Order Logic

SUBST (θ, α)

SUBST ({x/sam, y/pam}, likes(x , y))likes(sam, pam)

5 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Rules of Inference

Universal Elimination
For any sentence α, v a variable, and g a ground term.

∀ v α

SUBST ({v/g}, α)

From ∀x likes(x , icecream), we can infer
I likes(ben, icecream)
I likes(jerry, icecream)

6 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Rules of Inference

Existential Elimination
For any sentence α, v a variable, and k a constant
symbol that does not appear anywhere else in the
knowledge base:

∃ v α

SUBST ({v/k}, α)

From ∃x likes(x , icecream), we can infer
I likes(oliver, icecream)

7 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Rules of Inference

Existential Introduction
For any sentence α, v a variable that does not occur in
α, and g a ground term that does occur in α:

α

∃ v SUBST ({g/v}, α)

From likes(jerry, icecream), we can infer
I ∃ x likes(x , icecream),

8 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Clause Form for First-Order Logic
A literal is an atomic sentence or the negation of an atomic
sentence.
A clause is a set of literals representing their disjunction.
All variables are implicitly universally quantified.
{on(x , a)} represents ∀x on(x , a)
{¬on(x , a), above(f(x), b)} represents
∀x ¬on(x , a) ∨ above(f(x), b)

9 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Substitutions
A substitution is any finite set of associations between variables
and expressions in which

1. each variable is associated with at most one expression
and

2. no variable with an associated expression occurs within
any of the associated expressions.

The terms associated with the variables in a substitution are
often called bindings for these variables.
A substitution can be applied to a predicate calculus expression
to produce a new expression; the substitution instance βθ.

10 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Substitutions
EXAMPLE

{x/a, y/f(b), z/w}

p(x , x , y , v)

p(a, a, f(b), v)

11 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Substitutions A set of expressions α1 . . . αn are unifiable if and
only if there is a substitution σ that makes the expressions
identical.

12 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Unification
EXAMPLE

p(a, y , z)

and
p(x , b, z)

are unifiable with the substitution
{x/a, y/b, z/c}

to yield

p(a, b, c)

13 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving
Most General Unifier Consider again, the unifier of

p(a, y , z)

and
p(x , b, z)

{x/a, y/b, z/c}

p(a, b, c)

Other Unifiers are also Possible:
{x/a, y/b, z/d}
{x/a, y/b, z/f(c)}
{x/a, y/b, z/w}
...

14 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Most General Unifier But the Most General Unifier (MGU)
makes the least commitment.

{x/a, y/b}

p(a, b, z)

UNIFY (α, β) returns the MGU of α and β.

15 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Theorem Proving
Resolution Rule of Inference

α ∨ β1,¬β2 ∨ δ

(α ∨ δ)θ

where θ = mgu of β1 and β2.

- - - - - - - - - - - - - - - -

Set Notation

Γ with β1 ∈ Γ
∆ with ¬β2 ∈ ∆
—————————–
(Γ− β1) ∪ (∆− ¬β2)θ

16 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Theorem Proving

The Procedure

1. CLAUSES← Clausify (∆ ∪ ¬α)
2. Repeat

I Pick two clauses in CLAUSES, c1, cj , such that ci and cj

have a resolvent rij not already in CLAUSES.
I If no such ci , cj exist then return (∆ 6|= α).
I If rij = 2, then return (∆ |= α).
I Otherwize add rij to CLAUSES.

17 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Theorem Proving

Examples

1. ¬c(x) ∨ s(x)

2. ¬c(x) ∨ r(x)

3. c(a)

4. o(a)

5. ¬o(x) ∨ ¬r(x)

6. r(a) 3,2

7. ¬r(a) 5,4

8. 2 6,7

18 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Quantifiers
I ¬∀v ϕ⇔ ∃v ¬ϕ

I ¬∃v ϕ⇔ ∀v ¬ϕ

19 / 29



CS520: Introduction to Intelligent Systems Spring 2006

First-Order Theorem Proving

Elimination of Existential Quantifiers Skolemization
Existential quantifier not in scope of a universal
∃x p(x) is replaced by p(a)

Where “a” is a Skolem constant.
“a” must be a new constant symbol that does not
occur anywhere else in the database.

Otherwise
∀x ∀y ∃z p(x , y , z) is replaced by ∀x ∀y p(x , y , f(x , y))

Where “f” is a Skolem symbol.
“f” must be a new function symbol.

20 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

1. Eliminate Implications

(∀x p(x)) → (∃y q(y))

is replaced by

¬(∀x p(x)) ∨ (∃y q(y))

21 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

2. Move Negations Inwards

¬((∀x p(x)) ∨ (∃x q(x)))

(¬∀x p(x)) ∧ (¬∃x q(x))

(∃x ¬p(x)) ∧ (∀x ¬q(x))

22 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

3. Rename Variables
(∃x p(x)) ∧ (∀x q(x))

(∃x p(x)) ∧ (∀y q(y))

23 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

4. Convert to Prenex Form
(∀x p(x)) ∨ (∃y q(y))

∀x ∃y (p(x)) ∨ q(y))

Prefix: string of quantifiers.
Matrix: quantifier-free formula

24 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

5. Eliminate Existential Quantifiers
(∀y (∃x p(x , y))

(∀y p(g(y), y)

where “g” is a new function symbol, a Skolem function.

25 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

6. Put matrix in Conjunctive Normal Form Distribute

(p(x) ∧ q(x , y)) ∨ q(z) becomes
(p(x) ∨ q(z)) ∧ (q(x , y) ∨ q(z))

26 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

7. Eliminate Universal Quantifiers

∀x ∀y p(x , f (x), y) becomes
p(x , f (x), y)

27 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

8. Separate into Clauses

p(x) ∧ p(y) becomes
{p(x)} and {p(y)}

28 / 29



CS520: Introduction to Intelligent Systems Spring 2006

Conversion to Clause form

9. Rename Variables
Rename variables – so that no variable symbol
appears in more than one clause.

{p(x)}, {q(x)} becomes
{p(x)}, {q(y)}

29 / 29


