Theorem Proving

Notation

Clause $\stackrel{\text{def}}{=}$ Set of Literals

Literal $\stackrel{\mathrm{def}}{=}$ Atomic Sentence or its negation

$$\begin{cases} P, \neg P \\ R \end{cases}$$

$$\{S\}$$

2/13

Theorem Proving

Resolution Rule of Inference

$$\frac{\alpha \vee \beta, \neg \beta \vee \delta}{\alpha \vee \delta}$$

Set Notation

$$\Gamma \text{ with } \alpha \in \Gamma \\
\Delta \text{ with } \neg \alpha \in \Delta$$

$$(\Gamma - \alpha) \cup (\Delta - \neg \alpha)$$

Theorem Proving

CS520: Introduction to Intelligent Systems

Spring 2006

CS520: Introduction to Intelligent Systems

Spring 2006

4/13

Theorem Proving

Resolution Refutation Proofs

$$\Delta \models \alpha$$

$$\Delta, \neg \alpha \not\models$$

Example

- {P, Q} given
 {¬P, R} given
 {Q, R} 1,2

1/13

Conversion to Clause form

1. Eliminate Implications

is replaced by

$$\neg \alpha \lor \beta$$

Conversion to Clause form 3. Put in Conjunctive Normal Form Distribute $\alpha \vee (\beta \wedge \delta)$

Flatten

 $(\alpha \lor \beta) \land (\alpha \lor \delta)$

$$\begin{array}{l} (\alpha \vee \beta) \vee \delta \\ \text{becomes} \\ (\alpha \vee \beta \vee \delta) \end{array}$$

$$(\alpha \wedge \beta) \wedge \beta$$

 $(\alpha \wedge \beta) \wedge \delta$ becomes $(\alpha \wedge \beta \wedge \delta)$

CS520: Introduction to Intelligent Systems

Spring 2006

6/13

CS520: Introduction to Intelligent Systems

8/13

Spring 2006

Theorem Proving

- 1. {*P*} given
- 2. {¬P} given
 3. {} 1,2

Empty Clause: F, {}, □

Conversion to Clause form 2. Move Negations Inwards

symbols. Move ¬ inwards so that ¬ only applies to propositional

 $\neg\neg\beta$ is replaced by β

$$\neg(\alpha \land \beta)$$
 is replaced by $(\neg\alpha \lor \neg\beta)$

 $\neg(\alpha \lor \beta)$ is replaced by $(\neg\alpha \land \neg\beta)$

Conversion to Clause Form

Examples

Theorem Proving

Examples 1. *P* ∨ Q

$$4. \ \ \, \neg P \lor \neg Q$$

Conversion to Clause Form

CS520: Introduction to Intelligent Systems

Spring 2006

CS520: Introduction to Intelligent Systems

Spring 2006

12/13

10/13

Examples

2.
$$(P \lor Q) \land (\neg P \lor Q) \land R$$

 $\{P, Q\}, \{\neg P, Q\}, \{R\}$

Theorem Proving

The Procedure

$$\nabla \stackrel{\cdot}{=} \alpha$$

$$\Delta \cup \neg \alpha \not\models$$

- 1. Clausify $(\Delta \cup \neg \alpha)$
- 2. Repeatedly try to produce □ by performing resolution and adding the resolvent to the set of clauses.

CS520: Introduction to Intelligent Systems Spring 2006

Examples 1. ¬P∨Q 2. ¬Q 3. P 4. ¬P1,2 5. □ 3,4

Theorem Proving