Resolution Refutation Proofs

 $\Delta \models \alpha$

 $\Delta,\neg\alpha \not\models$

Notation

Clause
$$\stackrel{\text{def}}{=}$$
 Set of Literals

$$Literal \stackrel{\text{def}}{=} Atomic Sentence or its negation$$

$$\{P, \neg P, Q$$
$$\{P, \neg P\}$$
$$\{R\}$$
$$\{S\}$$

- 1. $\{P, Q\}$ given
- 2. $\{\neg P, R\}$ given
- **3**. {Q, R} **1**,2

Theorem Proving

Resolution Rule of Inference $\frac{\alpha \lor \beta, \neg \beta \lor \delta}{\alpha \lor \delta}$

Set Notation

 $\Gamma \text{ with } \alpha \in \Gamma$ $\Delta \text{ with } \neg \alpha \in \Delta$

$$(\mathsf{\Gamma} - \alpha) \cup (\Delta - \neg \alpha)$$

- 1. $\{P\}$ given
- 2. $\{\neg P\}$ given
- 3. {} 1,2

Empty Clause: F, {}, \Box

Conversion to Clause form

1. Eliminate Implications

$$\alpha \to \beta$$

is replaced by

 $\neg \alpha \lor \beta$

Conversion to Clause form 2. Move Negations Inwards

Move \neg inwards so that \neg only applies to propositional symbols.

 $\neg \neg \beta$ is replaced by β

$$eg(lpha \wedge eta)$$
 is replaced by $(\neg lpha \lor \neg eta)$

 $\neg(\alpha \lor \beta)$ is replaced by $(\neg \alpha \land \neg \beta)$

Conversion to Clause form

3. Put in Conjunctive Normal Form Distribute

 $\begin{array}{c} \alpha \lor (\beta \land \delta) \\ \text{becomes} \\ (\alpha \lor \beta) \land (\alpha \lor \delta) \end{array}$

Flatten

 $(\alpha \lor \beta) \lor \delta$ becomes $(\alpha \lor \beta \lor \delta)$ $(\alpha \land \beta) \land \delta$

becomes $(\alpha \land \beta \land \delta)$

Conversion to Clause Form

1.
$$P \land Q \land R$$

{ P }, { Q }, { R }
2. $(P \lor Q) \land (\neg P \lor Q) \land R$
{ P, Q }, { $\neg P, Q$ }, { R }

Conversion to Clause Form

3.
$$\neg((P \lor Q) \land \neg Q)$$
$$\neg(P \lor Q) \lor \neg \neg Q$$
$$(\neg P \land \neg Q) \lor Q$$
$$(\neg P \lor Q) \land (\neg Q \lor Q)$$
$$\{\neg P, Q\}, \{\neg Q, Q\}$$

Theorem Proving

The Procedure

 $\Delta \stackrel{?}{\models} \alpha$ $\Delta \cup \neg \alpha \stackrel{?}{\not\models}$

- 1. Clausify ($\Delta \cup \neg \alpha$)
- 2. Repeatedly try to produce □ by performing resolution and adding the resolvent to the set of clauses.

- 1. *P* ∨ Q
- **2**. ¬*P* ∨ Q
- **3**. *P* ∨ ¬*Q*
- **4**. ¬*P* ∨ ¬Q
- 5. Q 1,2
- 6. ¬Q 3,4
- **7**. □ 5,6

- **1**. ¬*P* ∨ Q
- **2**. ¬Q
- 3. P
- **4**. ¬*P* 1,2
- **5**. □ 3,4