
Planning

to build control algorithms that enable an
agent to synthesize a course of action
that will achieve its goals.
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Situation Calculus

Although it is possible to code a planning
problem within the situation calculus and
to obtain a plan (situation) through
answer extraction, most work in the field
has looked at specialized planning
algorithms as the most efficient way to
proceed. This will be the topic of this
section.
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Strips Operators

1)PC- Precondition list
2)D - delete list
3)A - Add List

Each a set of literals

move(X, Y, Z)

PC: On(X, Y) ^ Clear(X) ^ Clear(Z)

D: Clear(Z), On(X,Y)

A: On(X,Z), clear(Y), Clear(F1)
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Planning

F1 = Table from (Nilsson 1998) The state
description on the right of the picture above is
wrong. What should it be?
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Example
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Example (cont)
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Planning (Cont)

Given a goal formula G, we want to find a state S
such that S |= G.

Heuristics are needed to do this effectively.
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Recursive Strips

STRIPS(γ)

The algorithm given below allows the
goal to contain existentially quantified
variables in addition to ground literals.
Also, the state description may contain
arbitrary universally quantified formulas
in addition to ground literals . But it
may be simpler to to think of both states
and goals as being conjunctions of ground
literals.
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Recursive Strips(cont)

STRIPS(γ).

We assume we have a Global Data Structure S
which is a set of literals. It is intitially set to the
literals true in the intitial state.

1 repeat The main loop of STRIPS is iterative
and continues until a state description is
produced that satisfies the goal, γ. The
termination test in step 9 produces a
substitution, σ (possibly empty), such that
some conjuncts(possibly none) of γσ appear
in S. There can be several substitutions tried
in performing the test, so the test is a
possible backtracking point.

2 g ← an element of γσ such that S �|= g.
Another selection and therefore a
backtracking point. In ”means-ends-analysis”
terms, g is regarded as a ”difference” that
must be ”reduced” to achieve the goal.
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Recursive Strips(cont)

3 f ← a STRIPS rule whose add list contains a
literal λ, that unifies with g with mgu θ.
Since there may be several such rules. This is
another backtracking point. f is an operator
that is ”relevant” to reducing the difference.

4 f ′ ← fθ The instance of fusing substitution
θ. Note that f ′ is not necessrily a ground
instance, and therefore its preconditon may
contain variables.

5 p ← precondition formula of f ′ (instantiated
with the substitution θ).
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Recursive STRIPS(cont)

6 STRIPS(p). A recursive call to produce a state
description that satisfies the subgoal. This
call will typically change S.

7 f ′′ ← a ground instance of f ′ applicable in S.

8 S ← result of applying f ′′ to S. Note that S

always consists of a conjunction of ground
literals.

9 Until S |= γ.

from (Nilsson 1998)
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Illustration

Consider the following example (Nilsson 1998) to
illustrate recursive STRIPS:

The following is the START state:

And the following is the goal state:

γ = On(A, F1) ∧ On(B, F1) ∧ On(C, B)
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Illustration

A

C

B
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Illustration (cont)

select On(A, F1)as g

select move(A,x, F1)
call Strips (recursive call 1) to achieve
Clear(A) ∧ Clear(F1) ∧ On(A, x)
call produces substitution {x/C}
Now

S |= Clear(F1) ∧ On(A, C)

but not |= Clear(A)
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Illustration (cont)

So select Clear(A) as g, Select move(y, A, v) to
achieve g.

Call STRIPS recursively (Recursive call #2) to
achieve the preconditions of move(y,A,v)

PC: Clear(y) ∧ Clear(v) ∧ On(y, A)

step 9 produces {y/B}, {v/F1}
now Recursive call #2 succeeds
apply
move (B,A,F1)
(deleting from S the delete list of the action and
adding the elements of the add list)
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The Plan

Now S is as follows:

On(B,F1)

On(A,C)

On(C,F1)

Clear(A)

Clear(B)

Clear(F1)
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The Plan (continued)

now recursive call #1 succeeds

at step 9

S |= Clear(A)/\ Clear(F1)/\On(A,x)

with {x/C}

Intro to Intell Systems CS520 Spring 2006 17

The Plan Continued

apply move(A,C, F1)

(deleting from S the delete list of the action

and adding the elements of the add list)

So now S is as follows:

On(B, F1)

On(A,F1)

On(C,F1)

Clear(A)

Clear(B)

Clear(C)

Clear(F1)

S |= On(A, F1)/\On(B, F1)

but

S not |= On(C,B)

So STRIPS(On(C, B))
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The Plan Continued

Recursive call

#3 then

apply move(C, F1, B) to finally achieve

the goal.

So the resulting plan is:

1) move(B,A,F1)

2) move(A,C,F1)

3) move(C,F1,B)
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Problem

Consider the Following Example:

from (Nilsson 1998)

Can you see why this simple example creates a
problem for a STRIPS style planner?
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Partial Order Planning

The Sussman Anomaly motivated the
development of Partial Order Planners.

STRIPS operators perform state-space search.
That is they search through the space of states
that are possible solutions to the problem. An
alternative – taken by Partial Order Planning – is
to search through a space of plans. But now we
need a new representation for plans – one in
which plans are not completely specified.
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Partial Order Planning

Search in the space of Plans by using the
following operators to alter plans – making them
more specific.

1. add steps

2. reorder steps

3. change partially ordered into fully ordered

4. instantiating variables
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Partial Plans

Plans now are incompletely specified. They are
not fully ordered. Look at the partial order plan
given below and how it can be instantiated into 6
fully ordered plans.

from (Russell and Norvig 1995)
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Partial Plans

The plan just specifies that the left show must be
put on after the left sock and the right show must
be put on after the right sock.
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Partial Order Planning

Partial order plans are begun with the simplest
plan. They contain a plan consisting of a
”dummy” start action which has no prerequisites
and has the effect of creating the initial state and
a dummy finish action whose prerequisites are the
goal state and which does not have any effects.

The rest of the planning process fills in the
details.
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Sussman Anomaly

The following is the initial plan for the Sussman
Anomaly:

from (Nilsson 1998)
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Sussman Anomaly
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Sussman Anomaly
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Sussman Anomaly
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Additional Points

Note that the since b achieves a prerequisite of a,
it must be the case that b < a (b occurs before a).
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Additional Points
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Additional Points
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Additional Points
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Recent Work

• medic Planner tested in Lisp

• Graph Plan (Blum and Furst)

• Compilation to SAT

• Much work done at University of Washington
http://www.cs.washington.edu

• Pedagogical Graph plan in Lisp

• Survey Article by Dan Weld

• Applied to Nasa’s Deep Space One
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