01000010 2 1-bits even parity 01011000 3 1-bits odd parity 
01000010 parity bit = 0 01011000 parity bit = 1 
010000100 
010100100
010000000
010000101
010000100 
000010000
100010010
101010011
|  | 010000100 | 
|  | 0100001011 0000000011 1010000011 1010100001 | 
|  |  0000000011 1010000011 1010100001 | 
M(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x1 + b0x0 = 1x7 + 0x6 + 0x5 + 1x4 + 1x3 + 0x2 + 1x1 + 0x0 = x7 + x4 + x3 + x 
25/4 = 6 remainder 1
25 = 4*6 + 1
(25 - 1)/4 = 24/4 = 6
| Two codewords differ in some number of bits. | 
 | 
01000010 → 01010010 → 01011010 01000010 ← 01010010 ← 01011010
for all i, j : min Hamming(ci, cj)


| 
 
 | 
 | 


| 
 
 |  | 
| This page last modified on 2012 October 25. |