\(\langle\) X1, …, Xn\(\rangle\)
dom(X1) \(\times \cdots \times\) dom(Xn)
\(\alpha \wedge \beta\), \(\alpha \vee \beta\), and \(\neg\alpha\).
\(\omega \models \alpha \wedge \beta\) means \(\omega \models \alpha\) and \(\omega \models \beta\).
\(\omega \models \alpha \vee \beta\) means \(\omega \models \alpha\) or \(\omega \models \beta\).
\(\omega \models \neg\alpha\) means \(\omega \not\models \alpha\).
Pr : \(\Omega \rightarrow \) [0..1]such that the two properties
hold.Pr(\(\Omega\)) = 1.
If \(\Omega(\alpha_1), \ldots, \Omega(\alpha_n)\) are pairwise disjoint, then
Pr(\(\Omega(\alpha_1)\;\cup\;\ldots\;\cup\;\Omega(\alpha_n)\)) = Pr(\(\Omega(\alpha_1)\)) + \(\cdots\) + Pr(\(\Omega(\alpha_n)\)).
Pr(\(\alpha) = \frac{|\alpha|}{|\Omega|}\)
The probability Pr(\(\alpha\)) is the fraction of all possible worlds taken up by \(\alpha\).
|
|
ALOC { office, lab, coffee, mail } AHC boolean AHM boolean SWC boolean MW boolean
This page last modified on 2011 October 18. |