Intelligent Systems Lecture Notes

9 November 2011 • Basic Learning


Outline

Let’s Play a Game

Game-Play Tree

Decision Trees

Decision Tree Examples

Trees to Rules

Tree KB Example

an example decision tree

skips \(\leftarrow\) long

reads \(\leftarrow\) short \(\wedge\) new

skips \(\leftarrow\)
  short
\(\wedge\)
  followup
\(\wedge\)
  unknown

reads \(\leftarrow\)
  short
\(\wedge\)
  followup
\(\wedge\)
  known

Selecting Decision Trees

Generating Decision Trees

Decision-Tree Generator

Observations

Stopping Examples.

Stopping Examples..

Observations

Using Decision Trees

target feature predict(D, I)
  if leaf(D)
    return D.label
  else
    return 
      predict(D.child[val(I, D.label)], I)

Linear Regression

Linear Regression

Weight Vector

Finding Weight Vectors

Gradient Descent

Gradient Descent Code

weight vector GD(I, T, E, η)

  wvec = random initialization

  repeat
    for e in E
      δ = val(e, T) - pval(wvec, e, T)
      for i in wvec.size
        w[i] = w[i] + ηδval(e, I[i])
  until done

  return wvec

Predicting vs Classifying

Squashing Linear Functions

Step Activation

Sigmoid Activation

Linear Separability

Example

Linear Separable Learning

To the Doctor’s Again

Natural Categorizations

Bayesian Classifiers

Back in the Doctor’s Office

Bayes’ Rule

Example

Latent Variables

Naive Bayesian Classifier

Naive Bayes Classification

Finding Priors

Summary

References


This page last modified on 2011 November 13.

Creative
    Commons License