I am thinking of an animal.
What kind of skin does it have?
Furry
Is it around the size of a bread box?
Yes
And so on\(\ldots\)
|
|
|
|
|
skips \(\leftarrow\) long reads \(\leftarrow\) short \(\wedge\) new skips \(\leftarrow\) reads \(\leftarrow\) |
decision tree DTG(I, T, E) if stop here(E) return point estimate(T, E) I' = pick(I) root = node(I') for v in dom(I') root.add child( DTG(I, T, {e ∈ E | val(e, I') = v}) return root
if stop here(E) return point estimate(T, E)
|
|
|
|
I' = pick(I)
target feature predict(D, I) if leaf(D) return D.label else return predict(D.child[val(I, D.label)], I)
f w(\(I\)1, …, \(I\)n) = w0 + w1\(I\)1 + \(\cdots\) + wn\(I\)n = w0 + \(\sum\)j wj\(I\)j
w = (w0, …, wn)
pval w(e, T) = w0 + w1val(e, \(I\)1) + \(\cdots\) + wnval(e, \(I\)n)
ErrorE(w) = \(\sum\)e \(\in\) E(val(e, T) - pval w(e, T))2
weight vector GD(I, T, E, η) wvec = random initialization repeat for e in E δ = val(e, T) - pval(wvec, e, T) for i in wvec.size w[i] = w[i] + ηδval(e, I[i]) until done return wvec
f w(\(I\)1, …, \(I\)n) = w0 + w1\(I\)1 + \(\cdots\) + wn\(I\)n
f w(\(I\)1, …, \(I\)n) = f(w0 + w1\(I\)1 + \(\cdots\) + wn\(I\)n)
|
|
f(x) = 1/(1 + e-x)
Pr(h | e) = Pr(h \(\wedge\) e)/Pr(e)
Pr(e | h) = Pr(e \(\wedge\) h)/Pr(h)
Pr(h | e)Pr(e) = Pr(h \(\wedge\) e)
Pr(e | h)Pr(h) = Pr(e \(\wedge\) h)
Pr(e \(\wedge\) h) = Pr(h \(\wedge\) e)
Pr(h | e)Pr(e) = Pr(e | h)Pr(h)
Pr(flu | sniffles)Pr(sniffles) = Pr(sniffles | flu)Pr(flu)
Pr(flu | sniffles)= Pr(sniffles | flu)Pr(flu)/Pr(sniffles)
Pr(Category) and Pr(\(I\)j | Category)
then predict target-feature values.
Pr(Category | \(I\)1, …, \(I\)k) = \(\prod\) Pr(\(I\)i | Category)Pr(Category)
Pr(Category = ti) = ni/\(\sum\)j nj
Pr(Category = ti | \(I\) = ij) = nij/\(\sum\)k nkj
ni is the ti count.
njk is the count of ij under tk.
This page last modified on 2011 November 13. |