h \(\leftarrow\) bor of the form (called an integrity constraint)
false \(\leftarrow\) bwhere false is a special atom which is never true.
false \(\leftarrow\) dogissmelly
false \(\leftarrow\)
bulb1isout \(\wedge\) bulb2isout \(\wedge\) bulb3isout
a
false \(\leftarrow\) a
Given knowledge base S: { a, false \(\leftarrow\) a }
a is true
false \(\leftarrow\) a is true
false is true by modus ponens.
|
|
then KB \(\models \neg\)c.
KB: { false \(\leftarrow\) a \(\wedge\) b a \(\leftarrow\) c b \(\leftarrow\) c }
Assume a’s true,
Show a proves false (a contradiction),
Conclude a’s not true.
\(KB \models\) \(\neg a_1\) \(\vee\) \(\cdots\) \(\vee\) \(\neg a_k\)
At least one of the assumptions are wrong.
false \(\leftarrow\) bulblit \(\wedge\) bulbdarkand assumptions about lack of faults to rules.
lit \(\leftarrow\) light \(\wedge\) live \(\wedge\) poweredlight
BUConflicts(KB, Assumptions)
proved = {\((a, \{ a \}) : a \in \) Assumptions}
repeat
select h \(\leftarrow\) \(b_1\) \(\wedge\) \(\cdots\) \(\wedge\) \(b_m\) \(\in\) KB
where \((b_i, A_i)\in C\) for all \(i\)
and \((h, A = A_1\cup\cdots\cup A_m) \not\in C\)
\(C = C \cup \{(h, A)\}\)
until nothing more to selectreturn { \(A : (false, A) \in C\) }
TDConflicts(KB, Assumptions)
G = { false }
repeat
select ai \(\not\in\) Assumptions from G
choose ai \(\leftarrow\) b from KB
G = G \(\cup\) atomsIn(b)
until G \(\subseteq\) Assumptionsreturn G
ask a ⇒ unknown ask b ⇒ unknown ask a \(\wedge\) b ⇒ unknown
KB: { a \(\leftarrow\) b }, I: { }
ask a ⇒ false ask b ⇒ false ask a \(\wedge\) b ⇒ false
are equivalent, and so
a \(\leftarrow\) b1 \(\vdots\) a \(\leftarrow\) bk and
a \(\rightarrow\) b1 \(\vee\) \(\cdots\) \(\vee\) bk a \(\leftarrow\) b1 \(\vee\) \(\cdots\) \(\vee\) bk
a \(\leftrightarrow\) b1 \(\vee\) \(\cdots\) \(\vee\) bkThis is known as Clark’s completion.
|
|
bulblit \(\leftarrow\) powered \(\wedge \sim\)blown
This page last modified on 2011 September 28. |