Employing the Overlapping Solution FEM to Multiple Scatterers
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Abstract

Abstract

The H!-conforming overlapping solution FEM will be employed to compute the
scattered field in the setting of multiple scatterers. In particular, the variational
forms in the context of a single computational domain as well as multiple (disjoint)
domains will be compared. This is followed by some preliminary computational
results - single and iterative solves.
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Outline

e The original problem

— Truncate the domain (R, u*%, L)

— Variational form - H* conforming

— Numerical example with two scatterers
e New problem - Multiple Meshes

— Modified variational form
Numerical example with two scatterers
Single solve
— Iterative scheme

e Concluding Remarks
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The Problem We Consider-Domain and Boundaries

Consider the bounded scatterer D (with smooth boundary I') and set ) to be the unbounded
complement of D in R2. Determine u satisfying

V-AVu+ Knu = in Q, (1)
u = 0 on T, (2)

. ouv® .
rln;@ \ﬂ( oy iku ) = 0, 3)
u = v+ in Q (4)

where A is a complex 2 x 2 bounded matrix and n is piecewise uniformly continuous in Q.
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The Truncated Problem

e Let F be a closed uniformly Lipschitz curve surrounding D and X a closed uniformly
Lipschitz curve surrounding F.

e [, F and X have no point in common.
e The curve X serves as the outer boundary for the new truncated domain.
e Q is the bounded part of Q inside of ¥

e Q; and Qf are the parts of Q that are located interior and exterior to F, respectively.
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Cut-Off Function

Define the cut-off function denoted by R (y) such that R = 0 in a neighborhood of ¥, N'(X), and
R =1 in a neighborhood of F, N(F). That is to say, for x € ¥,

d(x,y) yeN(F),
Ry)®(x,y) =
0 y EN(Y).

where @ is the fundamental solution to the general helmholtz equation (1).
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Representation of Scattered Field

Represent the scattered field for x outside of F (using Green’s first identity):

Fx) = /Q Uy (y) - VyR(y)® (x, y) dAy — K2 /ﬂ R(y)® (x,y) u*(y)dAy

f/Fus ) 5—2 (x,y) dsy = 1R[u*, &](x).

If we define the boundary operator on X as

ony

£(u) = ( ou —iAu)L, A€R\ {0},

where ny is the outward normal to X, a reduced problem is to find u € W such that

V-AVu+k*nu = 0 in Q, (5)
u = 0 on T, (6)

c (u — IR[u, q>]) @)
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where

W= {f e LX(Q): f,f, € L3(Q)and f|r = 0}.
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Variational Form H?!

The variational formulation is to determine u € W such that
a(u,v)=4~(v) Yve W

where a (-, -) is the sesquilinear form defined on W by

a(u,v) = /W-AVUdA— kz/VnudA
Q Q

_/ng (1R1u, 1) ds—i)\/):Vuds

and £(-) is the semilinear form given by

L(v) = /XV,C (ui"c) ds.
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Numerical Results - Problem Information

Two Circular Scatterers 10

D: centered at (—7,1) with radius 2
D;: centered at (1,0) with radius 1

Uniform degree of approximation p = 8

8
6
4
2 5
Wave number k =m or A =2 or i 4
2 P
.
. . . 6
Lagrangian basis functions
8

Incident direction is %w 10 5 5
-15 -10 5 0 5 10

Note that ||u — upp|lw < hP||ullQ,pt1-
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Numerical Results - Two Plots
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Numerical Results - System Information

Two circular scatterers

Number of triangles: 2,046
Total Dofs: 65,991
Nonzero entries: 8,797,387 (0.2 %)

Symmetric and nonsymmetric entries

4
nz = 4927104 x10%

a(u,v) = /W-AVudA— k2/VnudA
Q Q

_/zvﬁ (1R[u, ®]) ds — i/\/):Vuds



Comments - References

e Overlapping Solution, C. Hazard and M. Lenoir, SIAM J. Math. Anal., 1996

e Existence Uniqueness for FEM & convergence analysis (p = 1) - J.C. and P. Monk, SIAM J.
Numer. Anal., 2000

e FEM convergence analysis p > 1 based, in part, on interpolants related to R and ¢ - J.C.
Appl. Numer. Math., 2012

e FEM Error Analysis for the Maxwell system - G. Hsiao, P. Monk and N. Nigam - SIAM J.
Numer. Anal., 2003
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The aim is to proceed by truncating the unbounded domain Q locally.
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Multiple Domain Formulation

Denote SA21 and SA22 as the unbounded regions outside of ¥; and X, respectively.
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Multiple Domain Formulation

Denote SA21 and SA22 as the unbounded regions outside of ¥; and X, respectively.

Following Grote and Kirsch*, decompose the scattered field u*“? inside ﬁl N ﬁg
into two outgoing waves u?“® for i = 1,2 each satisfying

A4 K2 = 0 in O ®)

lim \ﬁ(aa“"r iku,?ca) - 0. (9)

r—o0

*Marcus J. Grote and Christoph Kirsch, Nonreflecting boundary condiditon for time-dependent multiple
scattering , Journal of Computational Physics, 2007
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Multiple Domain Formulation

Denote SA21 and SA22 as the unbounded regions outside of ¥; and X, respectively.

Following Grote and Kirsch, decompose the scattered field u°“ inside ﬁl N ﬁg into

two outgoing waves 17 for i = 1,2 each satisfying
A+ Ku? = 0 in Q. (8)
H aufca H sca _
rll)rgo \/F (8[’ — IkU,' = 0 (9)
For x in §A2,-
ue(x) = / Vyui“ (y) - VyRi(y)® (x,y) dA, — k2/ Ri(y)® (x,y) u; (y)dA
Q, QF,

o
[ ) g (xoy)dsy = 17 8]()
Fi ny

u?®® is determined by its values on Qf U F.
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Multiple Domain Formulation

Denote ﬁl and ﬁg as the unbounded regions outside of X; and X, respectively.

Following Grote and Kirsch, decompose the scattered field u** inside ﬁl N ﬁz into

two outgoing waves u?? for i = 1,2 each satisfying
AU+ KPu® = 0 in Q, (8)
H au;?ca H sca _
rll)r& \/F (ar — IkU,' = O (9)

For x in Q;, use (x) := IR[F; ug, D](x).

i
The idea is then to couple 1@ with ui®® and u3? by requiring that
sca sca sca

Ut = Ut + Uy

onY =%, UX,.
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Multiple Domain Formulation

A new set of equations related to the reduced problem is to find v € W such that

V-AVu+k*nu = 0 in Q, (10)
u =0 on T, (11)
Li(u—I1%8Fu, o] = IR[Fju,®]) = Li (™) on X (12)

0
where L; corresponds to the operator <8n- — i/\) fori=1,2.

T

Consequently,

ou

%zi = Li(u)+ilu

= L;i(u™) + Li(u*) + idu

= Li(u™)+ L; (IF[F1; u, @] + IR[Fo; u, ]) + idu.
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The weak form would then be

a(u,v): = / Vv - AVudA — k2/ vnudA —
Q,UQ

QUQ,

/wl (1R[Fy; u, @] + IR[Fo; u, ®])ds
px]

/v£2 (1R[Fy; u, @] + IR[Fo; u, ®])ds
P

= / VLy (u) ds + / VL, (u™) ds
P}

P

= L(u™).

iA

YUY,

vuds
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Numerical Results - Disjoint Mesh/Problem Essentials

Two circular scatterers
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Numerical Results - Disjoint Mesh

Two circular scatterers

Number of triangles: 410
Total Dofs: 13,552
Nonzero entries: 2,989,744 (1.6 %)

Symmetric and nonsymmetric entries

a(u,v) = / Vv - AVudA — kz/ vnudA
QU0 QU
- / VL (IR[Fl; u, ®] + IR[Fa; u, d>]) ds
P}
_ / VLo (/R[Fl; u, ] + IR[F2; u, ¢]) ds
Jy,

— X vuds
YU,

B )

0 2000 4000 6000 8000 10000 12000
nz = 2205792

System Matrix
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Numerical Results - Two Plots
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Numerical Results - Increasing order of uniform approximation

Degree | Num. Dofs | Num. Nonzero | Percent Nonzero
1 259 8894 13.3
2 928 54,544 6.3
3 2,007 16,7073 4.1
4 3,496 379,064 3.1
5 5,395 725,560 25
6 7,704 1,244,064 2.1
7 10,423 1,974,539 1.8
8 13,552 2,989,744 1.6
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Preliminary Convergence Results

H-norm of the difference between the computed solution and the true solution
versus the uniform order of approximation.

o Degree of approx ranges from p=1top=7

—*—k= 7/4

10—10

10—12
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Preliminary Convergence Results

H-norm of the difference between the computed solution and the true solution
versus the uniform order of approximation.

o Degree of approx ranges from p=1top=7

o The so-called true solution is the solution computed on the single mesh with

p=38.

10—10 L

—*—k= 7/4

10—12
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An Associated lteration Method - n disjoint meshes

a(u,v) = Z(/Q‘V\wAVudA—kz/nlvnudA—i/\/):‘vuds>
_ Z(/{ ; (171F3; .9 > Z/vﬁ (1R1Fj;w, @]) ds

i T

We set
[M]m,n = Z/ Vvm - AVundA,
i IS

[G]lm,n = E / VmnupdA,
i

[S]m,n: E / Vmunds,
i JE

It should be noted that M, G and S are block diagonal. That is to say, if denote M(), G() and S()
as the parts of M, G over ; and S over %;,, then

M = blockdiag[M™™), M3 ... M)

with similar forms for G and S.
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An Associated lteration Method - n disjoint meshes

The remaining term contains the (artificial) boundary conditions on the individual

Q,"S
[ED]pp = Z/ VmLi (I%[Fi; un, ®]) ds
P
as well as the nonlocal coupling due to the representation of the outgoing fields
(U], 0 = Z/ Vil (IR[Fj: un, @]) .
i JEi

The system matrix is then written as

A=G—KM—-i)\S—B

where
E®  c@2 o cln
cy  E@  c@n
B = ,
cn) ) g0
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An Associated lteration Method - n disjoint meshes

The entire system is then given by

where L is the column vector

defined as

(L], = / VoLi (u™) ds.
T

i

This is the straightforward all in one solve.

24 /29



An Associated lteration Method - n disjoint meshes

Iteration Scheme

@ Determine an initial solution to the individual problems

(GO — kMM — jxst) — B0 — EM)x{) = L)

@ Then, until some criteria solve for i =1,....n

(GO — kMO — jxs() — B0 — E())x Q) ) 4 Z C(uJ)x()
i.J,i#j
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Numerical Results - Disjoint Mesh

Two circular scatterers

o

’ AV
Once we have xél) and xéz), we solve 4
?¢ AR
AW = (1) 4 c12)?) iyl X
J j— )
and then Z >
@, 0 _ L@ 4 @), R
A X; = L4+ C X; 'y N
forj=1,... -

Two meshes

26 /29



Numerical Results - Disjoint Mesh

Two circular scatterers

Once we have xél) and xéz)

, we solve
1,0« 1,2),(2)

Al )Xj =L® 4l )Xjfl
and then

A@ D _ (2 n C(Z’l)x(.l_)l

J J

forj=1,...
Note: 0 2000 4000 6000 8000 10000 12000

nz = 1078272

A = g0 — g 2pm) — jas() — gl — (),
Two meshes
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Numerical Results - Disjoint Mesh

. ||Xj - Xtrue”F
Two circular scatterers

10°
Once we have xél) and xéz), we solve
AWM — 1) 4 C(1,2)xj(_2)1 ool ®
; Z
and then
10°
2),01) _ () (2,1),(2)
A@xD = 1@ 4 @y
forj=1,... wr
1071
0 5 10 15

Using j =1,...,15 with k =27
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Concluding Remarks

o Analysis is likely straightforward.
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o An associated iterative method appears to work well.

29 /29



Concluding Remarks
o Analysis is likely straightforward.
o An associated iterative method appears to work well.

o More (interesting) complicated problems.

29 /29



Concluding Remarks
o Analysis is likely straightforward.
o An associated iterative method appears to work well.
o More (interesting) complicated problems.

o THANKS!
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