Employing the Overlapping Solution FEM to Multiple Scatterers

Joe Coyle
Department of Mathematics
Monmouth University

Finite Element Circus: Delaware, Fall 2018

Abstract

Abstract

The H^{1}-conforming overlapping solution FEM will be employed to compute the scattered field in the setting of multiple scatterers. In particular, the variational forms in the context of a single computational domain as well as multiple (disjoint) domains will be compared. This is followed by some preliminary computational results - single and iterative solves.

Outline

Outline

- The original problem
- Truncate the domain ($\mathrm{R}, u^{\text {sca }}, \mathcal{L}$)
- Variational form - H^{1} conforming
- Numerical example with two scatterers
- New problem - Multiple Meshes
- Modified variational form
- Numerical example with two scatterers
- Single solve
- Iterative scheme
- Concluding Remarks

The Problem We Consider-Domain and Boundaries

Consider the bounded scatterer D (with smooth boundary Γ) and set $\widehat{\Omega}$ to be the unbounded complement of \bar{D} in \mathbb{R}^{2}. Determine u satisfying

$$
\begin{align*}
\nabla \cdot \mathcal{A} \nabla u+k^{2} n u & =f & & \text { in } \widehat{\Omega}, \tag{1}\\
u & =0 & & \text { on } \Gamma, \tag{2}\\
\lim _{r \rightarrow \infty} \sqrt{r}\left(\frac{\partial u^{s}}{\partial r}-i k u^{s}\right) & =0, & & \\
u & =u^{i}+u^{s} & & \text { in } \widehat{\Omega} \tag{3}
\end{align*}
$$

where \mathcal{A} is a complex 2×2 bounded matrix and n is piecewise uniformly continuous in $\widehat{\Omega}$.

The Truncated Problem

- Let F be a closed uniformly Lipschitz curve surrounding D and Σ a closed uniformly Lipschitz curve surrounding F.
- Γ, F and Σ have no point in common.
- The curve Σ serves as the outer boundary for the new truncated domain.
- Ω is the bounded part of $\widehat{\Omega}$ inside of Σ
- Ω_{I} and Ω_{E} are the parts of Ω that are located interior and exterior to F, respectively.

Cut-Off Function

Define the cut-off function denoted by $R(\boldsymbol{y})$ such that $R=0$ in a neighborhood of $\Sigma, \mathcal{N}(\Sigma)$, and $R=1$ in a neighborhood of $F, \mathcal{N}(F)$. That is to say, for $\boldsymbol{x} \in \Sigma$,

$$
R(\boldsymbol{y}) \Phi(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{cc}
\Phi(\boldsymbol{x}, \boldsymbol{y}) & \boldsymbol{y} \in \mathcal{N}(F) \\
0 & \boldsymbol{y} \in \mathcal{N}(\Sigma)
\end{array}\right.
$$

where Φ is the fundamental solution to the general helmholtz equation (1).

$R \neq 0$ shown in red.

Representation of Scattered Field

Represent the scattered field for x outside of F (using Green's first identity):

$$
\begin{aligned}
u^{s}(\boldsymbol{x})= & \int_{\Omega_{E}} \nabla_{\boldsymbol{y}} u^{s}(\boldsymbol{y}) \cdot \nabla_{\boldsymbol{y}} R(\boldsymbol{y}) \Phi(\boldsymbol{x}, \boldsymbol{y}) d A_{\boldsymbol{y}}-k^{2} \int_{\Omega_{E}} R(\boldsymbol{y}) \Phi(\boldsymbol{x}, \boldsymbol{y}) u^{s}(\boldsymbol{y}) d A_{\boldsymbol{y}} \\
& -\int_{F} u^{s}(\boldsymbol{y}) \frac{\partial \Phi}{\partial \boldsymbol{n}_{\boldsymbol{y}}}(\boldsymbol{x}, \boldsymbol{y}) d s_{\boldsymbol{y}}:=I^{R}\left[u^{s}, \Phi\right](\boldsymbol{x})
\end{aligned}
$$

If we define the boundary operator on Σ as

$$
\mathcal{L}(u):=\left.\left(\frac{\partial u}{\partial \boldsymbol{n}_{x}}-i \lambda u\right)\right|_{\Sigma}, \quad \lambda \in \mathbb{R} \backslash\{0\}
$$

where $\boldsymbol{n}_{\boldsymbol{x}}$ is the outward normal to Σ, a reduced problem is to find $u \in W$ such that

$$
\begin{align*}
\nabla \cdot \mathcal{A} \nabla u+k^{2} n u & =0 & & \text { in } \Omega, \tag{5}\\
u & =0 & & \text { on } \Gamma, \tag{6}\\
\mathcal{L}\left(u-I^{R}[u, \Phi]\right) & =\mathcal{L}\left(u^{\text {inc }}\right) & & \text { on } \Sigma, \tag{7}
\end{align*}
$$

where

$$
W:=\left\{f \in L^{2}(\Omega): f_{x}, f_{y} \in L^{2}(\Omega) \text { and }\left.f\right|_{\Gamma}=0\right\}
$$

Variational Form H^{1}

The variational formulation is to determine $u \in W$ such that

$$
a(u, v)=\ell(v) \quad \forall v \in W
$$

where $a(\cdot, \cdot)$ is the sesquilinear form defined on W by

$$
\begin{aligned}
a(u, v)= & \int_{\Omega} \overline{\nabla v} \cdot \mathcal{A} \nabla u d A-k^{2} \int_{\Omega} \bar{v} n u d A \\
& -\int_{\Sigma} \bar{v} \mathcal{L}\left(I^{R}[u, \Phi]\right) d s-i \lambda \int_{\Sigma} \bar{v} u d s
\end{aligned}
$$

and $\ell(\cdot)$ is the semilinear form given by

$$
\ell(v)=\int_{\Sigma} \bar{v} \mathcal{L}\left(u^{i n c}\right) d s
$$

Numerical Results - Problem Information

Two Circular Scatterers

D_{1} : centered at $(-7,1)$ with radius 2
D_{2} : centered at $(1,0)$ with radius 1
Wave number $k=\pi$ or $\lambda=2$
Uniform degree of approximation $p=8$
Lagrangian basis functions
Incident direction is $\frac{3}{4} \pi$

Note that $\left\|u-u_{h p}\right\| w \leq h^{p}\|u\|_{\Omega, p+1}$.

Numerical Results - Two Plots

(a) Real part total field

(b) Imaginary part total field

Numerical Results - System Information

Two circular scatterers

Number of triangles: 2,046
Total Dofs: 65,991
Nonzero entries: 8,797,387 (0.2 \%)
Symmetric and nonsymmetric entries

$$
\begin{aligned}
a(u, v)= & \int_{\Omega} \overline{\nabla v} \cdot \mathcal{A} \nabla u d A-k^{2} \int_{\Omega} \bar{v} n u d A \\
& -\int_{\Sigma} \bar{v} \mathcal{L}\left(I^{R}[u, \Phi]\right) d s-i \lambda \int_{\Sigma} \bar{v} u d s
\end{aligned}
$$

Comments - References

- Overlapping Solution, C. Hazard and M. Lenoir, SIAM J. Math. Anal., 1996
- Existence Uniqueness for FEM \& convergence analysis $(p=1)$ - J.C. and P. Monk, SIAM J. Numer. Anal., 2000
- FEM convergence analysis $p \geq 1$ based, in part, on interpolants related to R and Φ - J.C. Appl. Numer. Math., 2012
- FEM Error Analysis for the Maxwell system - G. Hsiao, P. Monk and N. Nigam - SIAM J. Numer. Anal., 2003

Multiple Domain (Disjoint) Formulation

The aim is to proceed by truncating the unbounded domain $\widehat{\Omega}$ locally.

Multiple Domain Formulation

Denote $\widehat{\Omega}_{1}$ and $\widehat{\Omega}_{2}$ as the unbounded regions outside of Σ_{1} and Σ_{2}, respectively.

Multiple Domain Formulation

Denote $\widehat{\Omega}_{1}$ and $\widehat{\Omega}_{2}$ as the unbounded regions outside of Σ_{1} and Σ_{2}, respectively.
Following Grote and Kirsch*, decompose the scattered field $u^{\text {sca }}$ inside $\widehat{\Omega}_{1} \cap \widehat{\Omega}_{2}$ into two outgoing waves $u_{i}^{\text {sca }}$ for $i=1,2$ each satisfying

$$
\begin{array}{rlr}
\Delta u_{i}^{\text {sca }}+k^{2} u_{i}^{s c a} & =0 & \text { in } \hat{\Omega}_{i} \\
\lim _{r \rightarrow \infty} \sqrt{r}\left(\frac{\partial u_{i}^{\text {sa }}}{\partial r}-i k u_{i}^{s c a}\right) & =0 \tag{9}
\end{array}
$$

*Marcus J. Grote and Christoph Kirsch, Nonreflecting boundary condiditon for time-dependent multiple scattering, Journal of Computational Physics, 2007

Multiple Domain Formulation

Denote $\widehat{\Omega}_{1}$ and $\widehat{\Omega}_{2}$ as the unbounded regions outside of Σ_{1} and Σ_{2}, respectively.
Following Grote and Kirsch, decompose the scattered field $u^{\text {sca }}$ inside $\widehat{\Omega}_{1} \cap \widehat{\Omega}_{2}$ into two outgoing waves $u_{i}^{\text {sca }}$ for $i=1,2$ each satisfying

$$
\begin{array}{rlr}
\Delta u_{i}^{s c a}+k^{2} u_{i}^{s c a} & =0 & \text { in } \widehat{\Omega}_{i} \\
\lim _{r \rightarrow \infty} \sqrt{r}\left(\frac{\partial u_{i}^{\text {sa }}}{\partial r}-i k u_{i}^{s c a}\right) & =0 \tag{9}
\end{array}
$$

For \boldsymbol{x} in $\widehat{\Omega}_{i}$

$$
\begin{aligned}
u_{i}^{\text {sca }}(\boldsymbol{x})= & \int_{\Omega_{F_{i}}} \nabla_{\boldsymbol{y}} u_{i}^{\text {sca }}(\boldsymbol{y}) \cdot \nabla_{\boldsymbol{y}} R_{i}(\boldsymbol{y}) \Phi(\boldsymbol{x}, \boldsymbol{y}) d A_{\boldsymbol{y}}-k^{2} \int_{\Omega_{F_{i}}} R_{i}(\boldsymbol{y}) \Phi(\boldsymbol{x}, \boldsymbol{y}) u_{i}^{s}(\boldsymbol{y}) d A_{,} \\
& -\int_{F_{i}} u_{i}^{s}(\boldsymbol{y}) \frac{\partial \Phi}{\partial \boldsymbol{n}_{\boldsymbol{y}}}(\boldsymbol{x}, \boldsymbol{y}) d s_{\boldsymbol{y}}:=I^{R_{i}}\left[F_{i} ; u_{i}^{s}, \Phi\right](\boldsymbol{x})
\end{aligned}
$$

$u_{i}^{\text {sca }}$ is determined by its values on $\Omega_{F_{i}} \cup F$.

Multiple Domain Formulation

Denote $\widehat{\Omega}_{1}$ and $\widehat{\Omega}_{2}$ as the unbounded regions outside of Σ_{1} and Σ_{2}, respectively.
Following Grote and Kirsch, decompose the scattered field $u^{\text {sca }}$ inside $\widehat{\Omega}_{1} \cap \widehat{\Omega}_{2}$ into two outgoing waves $u_{i}^{\text {sca }}$ for $i=1,2$ each satisfying

$$
\begin{align*}
\Delta u_{i}^{\text {sca }}+k^{2} u_{i}^{\text {sca }} & =0 \tag{8}\\
\lim _{r \rightarrow \infty} \sqrt{r}\left(\frac{\partial s_{i}^{\text {sa }}}{\partial r}-i k u_{i}^{\text {sca }}\right) & =0 \tag{9}
\end{align*}
$$

For \boldsymbol{x} in $\widehat{\Omega}_{i}, u_{i}^{s c a}(\boldsymbol{x}):=I^{R}\left[F_{i} ; u_{i}^{s}, \Phi\right](\boldsymbol{x})$.
The idea is then to couple $u^{\text {sca }}$ with $u_{1}^{\text {sca }}$ and $u_{2}^{\text {sca }}$ by requiring that

$$
u^{s c a}=u_{1}^{s c a}+u_{2}^{s c a}
$$

on $\Sigma=\Sigma_{1} \cup \Sigma_{2}$.

Multiple Domain Formulation

A new set of equations related to the reduced problem is to find $u \in W$ such that

$$
\begin{align*}
\nabla \cdot \mathcal{A} \nabla u+k^{2} n u & =0 & & \text { in } \Omega_{i}, \tag{10}\\
u & =0 & & \text { on } \Gamma, \tag{11}\\
\mathcal{L}_{i}\left(u-I^{R_{i}}\left[F_{i} ; u, \Phi\right]-I^{R}\left[F_{j} ; u, \Phi\right]\right) & =\mathcal{L}_{i}\left(u^{i n c}\right) & & \text { on } \Sigma_{i}
\end{align*}
$$

where \mathcal{L}_{i} corresponds to the operator $\left.\left(\frac{\partial}{\partial \boldsymbol{n}_{i}}-i \lambda\right)\right|_{\Sigma_{i}}$ for $i=1,2$.

Consequently,

$$
\begin{aligned}
\left.\frac{\partial u}{\partial \boldsymbol{n}}\right|_{\Sigma_{i}} & =\mathcal{L}_{i}(u)+i \lambda u \\
& =\mathcal{L}_{i}\left(u^{i n c}\right)+\mathcal{L}_{i}\left(u^{s c a}\right)+i \lambda u \\
& =\mathcal{L}_{i}\left(u^{i n c}\right)+\mathcal{L}_{i}\left(I^{R}\left[F_{1} ; u, \Phi\right]+I^{R}\left[F_{2} ; u, \Phi\right]\right)+i \lambda u .
\end{aligned}
$$

The weak form would then be

$$
\begin{aligned}
a(u, v):= & \int_{\Omega_{1} \cup \Omega_{2}} \overline{\nabla v} \cdot \mathcal{A} \nabla u d A-k^{2} \int_{\Omega_{1} \cup \Omega_{2}} \bar{v} n u d A-i \lambda \int_{\Sigma_{1} \cup \Sigma_{2}} \bar{v} u d s \\
& -\int_{\Sigma_{1}} \bar{v} \mathcal{L}_{1}\left(I^{R}\left[F_{1} ; u, \Phi\right]+I^{R}\left[F_{2} ; u, \Phi\right]\right) d s \\
& -\int_{\Sigma_{2}} \bar{v} \mathcal{L}_{2}\left(I^{R}\left[F_{1} ; u, \Phi\right]+I^{R}\left[F_{2} ; u, \Phi\right]\right) d s \\
= & \int_{\Sigma_{1}} \bar{v} \mathcal{L}_{1}\left(u^{i n c}\right) d s+\int_{\Sigma_{2}} \bar{v} \mathcal{L}_{2}\left(u^{i n c}\right) d s \\
:= & \ell\left(u^{i n c}\right) .
\end{aligned}
$$

Numerical Results - Disjoint Mesh/Problem Essentials

Two circular scatterers
D_{1} : centered at $(-7,1)$ with radius 2
D_{2} : centered at $(1,0)$ with radius 1
Wave number $k=\pi$ or $\lambda=2$
Uniform degree of approximation $p=8$ Incident direction is $\frac{3}{4} \pi$

Numerical Results - Disjoint Mesh

Two circular scatterers

Number of triangles: 410
Total Dofs: 13,552
Nonzero entries: 2,989,744 (1.6 \%)
Symmetric and nonsymmetric entries

$$
\begin{aligned}
a(u, v) & =\int_{\Omega_{1} \cup \Omega_{2}} \overline{\nabla v} \cdot \mathcal{A} \nabla u d A-k^{2} \int_{\Omega_{1} \cup \Omega_{2}} \bar{v} n u d A \\
& -\int_{\Sigma_{1}} \bar{v} \mathcal{L}_{1}\left(I^{R}\left[F_{1} ; u, \Phi\right]+I^{R}\left[F_{2} ; u, \Phi\right]\right) d s \\
& -\int_{\Sigma_{2}} \bar{v} \mathcal{L}_{2}\left(I^{R}\left[F_{1} ; u, \Phi\right]+I^{R}\left[F_{2} ; u, \Phi\right]\right) d s \\
& -i \lambda \int_{\Sigma_{1} \cup \Sigma_{2}} \bar{v} u d s
\end{aligned}
$$

System Matrix

Numerical Results - Two Plots

(a) Real part total field

(b) Imaginary part total field

$$
\left\|x_{\text {one mesh }}-x_{\text {two meshes }}\right\|_{F}=2.2117 e-07
$$

Numerical Results - Increasing order of uniform approximation

Degree	Num. Dofs	Num. Nonzero	Percent Nonzero
1	259	8894	13.3
2	928	54,544	6.3
3	2,007	16,7073	4.1
4	3,496	379,064	3.1
5	5,395	725,560	2.5
6	7,704	$1,244,064$	2.1
7	10,423	$1,974,539$	1.8
8	13,552	$2,989,744$	1.6

Preliminary Convergence Results

H^{1}-norm of the difference between the computed solution and the true solution versus the uniform order of approximation.

- Degree of approx ranges from $p=1$ to $p=7$

Preliminary Convergence Results

H^{1}-norm of the difference between the computed solution and the true solution versus the uniform order of approximation.

- Degree of approx ranges from $p=1$ to $p=7$
- The so-called true solution is the solution computed on the single mesh with $p=8$.

An Associated Iteration Method - n disjoint meshes

$$
\begin{aligned}
& a(u, v)= \sum_{i}\left(\int_{\Omega_{i}} \overline{\nabla v} \cdot \mathcal{A} \nabla u d A-k^{2} \int_{\Omega_{i}} \bar{v} n u d A-i \lambda \int_{\Sigma_{i}} \bar{v} u d s\right) \\
&- \sum_{i}\left(\int_{\Sigma_{i}} \bar{v} \mathcal{L}_{i}\left(I^{R}\left[F_{i} ; u, \Phi\right]\right) d s\right)-\sum_{i, j ; i \neq j} \int_{\Sigma_{i}} \bar{v} \mathcal{L}_{i}\left(I^{R}\left[F_{j} ; u, \Phi\right]\right) d s \\
&=\sum_{i} \int_{\Sigma_{i}} \bar{v} \mathcal{L}_{i}\left(u^{i n c}\right) d s \\
& \quad=\ell(u) .
\end{aligned}
$$

We set

$$
\begin{gathered}
{[\mathrm{M}]_{m, n}=\sum_{i} \int_{\Omega_{i}} \overline{\nabla v}_{m} \cdot \mathcal{A} \nabla u_{n} d A} \\
{[\mathrm{G}]_{m, n}=\sum_{i} \int_{\Omega_{i}} \bar{v}_{m} n u_{n} d A} \\
{[\mathrm{~S}]_{m, n}=\sum_{i} \int_{\Sigma_{i}} \bar{v}_{m} u_{n} d s}
\end{gathered}
$$

It should be noted that M, G and S are block diagonal. That is to say, if denote $M^{(i)}, G^{(i)}$ and $\mathrm{S}^{(i)}$ as the parts of M, G over Ω_{i} and S over Σ_{i}, then

$$
\mathrm{M}=\operatorname{blockdiag}\left[\mathrm{M}^{(1)}, \mathrm{M}^{(2)}, \ldots, \mathrm{M}^{(\mathrm{n})}\right]
$$

with similar forms for G and S.

An Associated Iteration Method - n disjoint meshes

The remaining term contains the (artificial) boundary conditions on the individual Ω_{i} 's

$$
\left[E^{(i)}\right]_{m, n}=\sum_{i} \int_{\Sigma_{i}} \bar{v}_{m} \mathcal{L}_{i}\left(I^{R}\left[F_{i} ; u_{n}, \Phi\right]\right) d s
$$

as well as the nonlocal coupling due to the representation of the outgoing fields

$$
\left[\mathrm{C}^{(i, j)}\right]_{m, n}=\sum_{i} \int_{\Sigma_{i}} \bar{v}_{m} \mathcal{L}_{i}\left(I^{R}\left[F_{j} ; u_{n}, \Phi\right]\right) d s
$$

The system matrix is then written as

$$
\mathrm{A}=\mathrm{G}-k^{2} \mathrm{M}-i \lambda \mathrm{~S}-\mathrm{B}
$$

where

$$
\mathrm{B}=\left[\begin{array}{cccc}
\mathrm{E}^{(1)} & \mathrm{C}^{(1,2)} & \ldots & \mathrm{C}^{(1, n)} \\
\mathrm{C}^{(2,1)} & \mathrm{E}^{(2)} & \ldots & \mathrm{C}^{(2, n)} \\
\vdots & \vdots & \ddots & \vdots \\
\mathrm{C}^{(n, 1)} & \mathrm{C}^{(n, 2)} & \ldots & \mathrm{E}^{(n)}
\end{array}\right] .
$$

An Associated Iteration Method - n disjoint meshes

The entire system is then given by

$$
\mathrm{A} x=\mathrm{L}
$$

where L is the column vector

$$
\mathrm{L}=\left[\begin{array}{c}
\mathrm{L}^{(1)} \\
\mathrm{L}^{(2)} \\
\vdots \\
\mathrm{L}^{(n)}
\end{array}\right]
$$

defined as

$$
\left[\mathrm{L}^{(i)}\right]_{n}=\int_{\Sigma_{i}} \bar{v}_{n} \mathcal{L}_{i}\left(u^{i n c}\right) d s .
$$

This is the straightforward all in one solve.

An Associated Iteration Method - n disjoint meshes

Iteration Scheme

- Determine an initial solution to the individual problems

$$
\left(\mathrm{G}^{(i)}-k^{2} \mathrm{M}^{(i)}-i \lambda \mathrm{~S}^{(i)}-\mathrm{B}^{(i)}-\mathrm{E}^{(i)}\right) x_{0}^{(i)}=\mathrm{L}^{(i)}
$$

(2) Then, until some criteria solve for $i=1, \ldots, n$

$$
\left(\mathrm{G}^{(i)}-k^{2} \mathrm{M}^{(i)}-i \lambda \mathrm{~S}^{(i)}-\mathrm{B}^{(i)}-\mathrm{E}^{(i)}\right) \boldsymbol{x}_{j}^{(i)}=\mathrm{L}^{(i)}+\sum_{i, j, i \neq j} \mathrm{C}^{(i, j)} \boldsymbol{x}_{j-1}^{(i)} .
$$

Numerical Results - Disjoint Mesh

Two circular scatterers

Once we have $x_{0}^{(1)}$ and $x_{0}^{(2)}$, we solve

$$
\mathrm{A}^{(1)} \boldsymbol{x}_{j}^{(1)}=\mathrm{L}^{(1)}+\mathrm{C}^{(1,2)} \boldsymbol{x}_{j-1}^{(2)}
$$

and then

$$
\mathrm{A}^{(2)} \boldsymbol{x}_{j}^{(1)}=\mathrm{L}^{(2)}+\mathrm{C}^{(2,1)} \boldsymbol{x}_{j-1}^{(1)}
$$

for $j=1, \ldots$

Two meshes

Numerical Results - Disjoint Mesh

Two circular scatterers

Once we have $x_{0}^{(1)}$ and $x_{0}^{(2)}$, we solve

$$
\mathrm{A}^{(1)} \boldsymbol{x}_{j}^{(1)}=\mathrm{L}^{(1)}+\mathrm{C}^{(1,2)} \boldsymbol{x}_{j-1}^{(2)}
$$

and then

$$
\mathrm{A}^{(2)} \boldsymbol{x}_{j}^{(1)}=\mathrm{L}^{(2)}+\mathrm{C}^{(2,1)} \boldsymbol{x}_{j-1}^{(1)}
$$

for $j=1, \ldots$
Note:

$$
\mathrm{A}^{(i)}=\mathrm{G}^{(i)}-k^{2} \mathrm{M}^{(i)}-i \lambda \mathrm{~S}^{(i)}-\mathrm{B}^{(i)}-\mathrm{E}^{(i)} .
$$

Two meshes

Numerical Results - Disjoint Mesh

Two circular scatterers

Once we have $x_{0}^{(1)}$ and $x_{0}^{(2)}$, we solve

$$
\mathrm{A}^{(1)} \boldsymbol{x}_{j}^{(1)}=\mathrm{L}^{(1)}+\mathrm{C}^{(1,2)} \boldsymbol{x}_{j-1}^{(2)}
$$

and then

$$
\mathrm{A}^{(2)} \boldsymbol{x}_{j}^{(1)}=\mathrm{L}^{(2)}+\mathrm{C}^{(2,1)} \boldsymbol{x}_{j-1}^{(1)}
$$

for $j=1, \ldots$

$$
\left\|x_{j}-x_{\text {true }}\right\|_{F}
$$

Using $j=1, \ldots, 15$ with $k=2 \pi$

Summary

Concluding Remarks

- Analysis is likely straightforward.

Summary

Concluding Remarks

- Analysis is likely straightforward.
- An associated iterative method appears to work well.

Summary

Concluding Remarks

- Analysis is likely straightforward.
- An associated iterative method appears to work well.
- More (interesting) complicated problems.

Summary

Concluding Remarks

- Analysis is likely straightforward.
- An associated iterative method appears to work well.
- More (interesting) complicated problems.
- THANKS!

