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Abstract

Abstract

The H1-conforming overlapping solution FEM will be employed to compute the
scattered field in the setting of multiple scatterers. In particular, the variational
forms in the context of a single computational domain as well as multiple (disjoint)
domains will be compared. This is followed by some preliminary computational
results - single and iterative solves.
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Outline

Outline

• The original problem

− Truncate the domain (R, usca, L)
− Variational form - H1 conforming
− Numerical example with two scatterers

• New problem - Multiple Meshes

− Modified variational form
− Numerical example with two scatterers
− Single solve
− Iterative scheme

• Concluding Remarks
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The Problem We Consider-Domain and Boundaries

Consider the bounded scatterer D (with smooth boundary Γ) and set Ω̂ to be the unbounded
complement of D in R2. Determine u satisfying

∇ · A∇u + k2nu = f in Ω̂, (1)

u = 0 on Γ, (2)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (3)

u = ui + us in Ω̂ (4)

where A is a complex 2× 2 bounded matrix and n is piecewise uniformly continuous in Ω̂.
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The Truncated Problem

• Let F be a closed uniformly Lipschitz curve surrounding D and Σ a closed uniformly
Lipschitz curve surrounding F .

• Γ, F and Σ have no point in common.

• The curve Σ serves as the outer boundary for the new truncated domain.

• Ω is the bounded part of Ω̂ inside of Σ

• ΩI and ΩE are the parts of Ω that are located interior and exterior to F , respectively.
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Cut-Off Function

Define the cut-off function denoted by R (y) such that R = 0 in a neighborhood of Σ, N (Σ), and
R = 1 in a neighborhood of F , N (F ). That is to say, for x ∈ Σ,

R(y)Φ(x , y) =


Φ(x , y) y ∈ N (F ),

0 y ∈ N (Σ).

where Φ is the fundamental solution to the general helmholtz equation (1).

R 6= 0 shown in red.
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Representation of Scattered Field

Represent the scattered field for x outside of F (using Green’s first identity):

us (x) =

∫
ΩE

∇yu
s (y) · ∇yR(y)Φ (x , y) dAy − k2

∫
ΩE

R(y)Φ (x , y) us(y)dAy

−
∫
F
us (y)

∂Φ

∂ny
(x , y) dsy := IR [us ,Φ](x).

If we define the boundary operator on Σ as

L (u) :=

(
∂u

∂nx
− iλu

)∣∣∣∣
Σ

, λ ∈ R \ {0},

where nx is the outward normal to Σ, a reduced problem is to find u ∈W such that

∇ · A∇u + k2nu = 0 in Ω, (5)

u = 0 on Γ, (6)

L
(
u − IR [u,Φ]

)
= L

(
uinc
)

on Σ, (7)

where

W :=
{
f ∈ L2(Ω) : fx , fy ∈ L2(Ω) and f |Γ = 0

}
.
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Variational Form H1

The variational formulation is to determine u ∈W such that

a (u, v) = ` (v) ∀v ∈W

where a (·, ·) is the sesquilinear form defined on W by

a (u, v) =

∫
Ω
∇v · A∇udA− k2

∫
Ω
vnudA

−
∫

Σ
vL
(
IR [u,Φ]

)
ds − iλ

∫
Σ
vuds

and ` (·) is the semilinear form given by

` (v) =

∫
Σ
vL
(
uinc
)
ds.
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Numerical Results - Problem Information

Two Circular Scatterers

D1: centered at (−7, 1) with radius 2

D2: centered at (1, 0) with radius 1

Wave number k = π or λ = 2

Uniform degree of approximation p = 8

Lagrangian basis functions

Incident direction is 3
4π

Note that ‖u − uhp‖W ≤ hp‖u‖Ω,p+1.
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Numerical Results - Two Plots

(a) Real part total field (b) Imaginary part total field
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Numerical Results - System Information

Two circular scatterers

Number of triangles: 2,046

Total Dofs: 65,991

Nonzero entries: 8,797,387 (0.2 %)

Symmetric and nonsymmetric entries

a (u, v) =

∫
Ω

∇v · A∇udA− k2

∫
Ω

vnudA

−
∫

Σ

vL
(
IR [u,Φ]

)
ds − iλ

∫
Σ

vuds
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Multiple Domain (Disjoint) Formulation

The aim is to proceed by truncating the unbounded domain Ω̂ locally.

Original mesh Σ1 - - - and Σ2 - - -

ΩF1 and ΩF2
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Multiple Domain Formulation

Denote Ω̂1 and Ω̂2 as the unbounded regions outside of Σ1 and Σ2, respectively.

Σ1 - - - and Σ2 - - -
ΩF1 and ΩF2

Following Grote and Kirsch, decompose the scattered field usca inside Ω̂1 ∩ Ω̂2 into
two outgoing waves uscai for i = 1, 2 each satisfying

4uscai + k2uscai = 0 in Ω̂i , (8)

lim
r→∞

√
r

(
∂uscai

∂r
− ikuscai

)
= 0. (9)

For x in Ω̂i , u
sca
i (x) := IR [Fi ; u

s
i ,Φ](x).

The idea is then to couple usca with usca1 and usca2 by requiring that

usca = usca1 + usca2

on Σ = Σ1 ∪ Σ2.
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Denote Ω̂1 and Ω̂2 as the unbounded regions outside of Σ1 and Σ2, respectively.

Following Grote and Kirsch∗, decompose the scattered field usca inside Ω̂1 ∩ Ω̂2

into two outgoing waves uscai for i = 1, 2 each satisfying
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lim
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√
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(
∂uscai
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∗Marcus J. Grote and Christoph Kirsch, Nonreflecting boundary condiditon for time-dependent multiple
scattering , Journal of Computational Physics, 2007
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∫
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Ri (y)Φ (x , y) usi (y)dAy
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∫
Fi

usi (y)
∂Φ

∂ny
(x , y) dsy := IRi [Fi ; u

s
i ,Φ](x)
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For x in Ω̂i ,
uscai (x) := IR [Fi ; u

s
i ,Φ](x).
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Multiple Domain Formulation

A new set of equations related to the reduced problem is to find u ∈W such that

∇ · A∇u + k2nu = 0 in Ωi , (10)

u = 0 on Γ, (11)

Li

(
u − IRi [Fi ; u,Φ]− IR [Fj ; u,Φ]

)
= Li

(
uinc
)

on Σi (12)

where Li corresponds to the operator

(
∂

∂ni
− iλ

)∣∣∣∣
Σi

for i = 1, 2.

Consequently,

∂u

∂n

∣∣∣∣
Σi

= Li (u) + iλu

= Li (u
inc) + Li (u

sca) + iλu

= Li (u
inc) + Li

(
IR [F1; u,Φ] + IR [F2; u,Φ]

)
+ iλu.
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The weak form would then be

a(u, v) : =

∫
Ω1∪Ω2

∇v · A∇udA− k2

∫
Ω1∪Ω2

vnudA− iλ

∫
Σ1∪Σ2

vuds

−
∫

Σ1

vL1

(
IR [F1; u,Φ] + IR [F2; u,Φ]

)
ds

−
∫

Σ2

vL2

(
IR [F1; u,Φ] + IR [F2; u,Φ]

)
ds

=

∫
Σ1

vL1

(
uinc
)
ds +

∫
Σ2

vL2

(
uinc
)
ds

:= `(uinc).
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Numerical Results - Disjoint Mesh/Problem Essentials

Two circular scatterers

D1: centered at (−7, 1) with radius 2

D2: centered at (1, 0) with radius 1

Wave number k = π or λ = 2

Uniform degree of approximation p = 8

Incident direction is 3
4π
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Numerical Results - Disjoint Mesh

Two circular scatterers

Number of triangles: 410

Total Dofs: 13,552

Nonzero entries: 2,989,744 (1.6 %)

Symmetric and nonsymmetric entries

a(u, v) =

∫
Ω1∪Ω2

∇v · A∇udA− k2
∫

Ω1∪Ω2

vnudA

−
∫

Σ1

vL1

(
IR [F1; u,Φ] + IR [F2; u,Φ]

)
ds

−
∫

Σ2

vL2

(
IR [F1; u,Φ] + IR [F2; u,Φ]

)
ds

− iλ

∫
Σ1∪Σ2

vuds

System Matrix
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Numerical Results - Two Plots
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(a) Real part total field (b) Imaginary part total field

‖xone mesh − xtwo meshes‖F = 2.2117e − 07
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Numerical Results - Increasing order of uniform approximation

Degree Num. Dofs Num. Nonzero Percent Nonzero
1 259 8894 13.3
2 928 54,544 6.3
3 2,007 16,7073 4.1
4 3,496 379,064 3.1
5 5,395 725,560 2.5
6 7,704 1,244,064 2.1
7 10,423 1,974,539 1.8
8 13,552 2,989,744 1.6
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Preliminary Convergence Results

H1-norm of the difference between the computed solution and the true solution
versus the uniform order of approximation.

Degree of approx ranges from p = 1 to p = 7

The so-called true solution is the solution computed on the single mesh with
p = 8.
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An Associated Iteration Method - n disjoint meshes

a(u, v) =
∑
i

(∫
Ωi

∇v · A∇udA− k2
∫

Ωi

vnudA− iλ

∫
Σi

vuds

)

−
∑
i

(∫
Σi

vLi
(
IR [Fi ; u,Φ]

)
ds

)
−
∑
i,j ;i 6=j

∫
Σi

vLi
(
IR [Fj ; u,Φ]

)
ds

=
∑
i

∫
Σi

vLi
(
uinc
)
ds

= `(u).

We set

[M]m,n =
∑
i

∫
Ωi

∇vm · A∇undA,

[G]m,n =
∑
i

∫
Ωi

vmnundA,

[S]m,n =
∑
i

∫
Σi

vmunds,

It should be noted that M,G and S are block diagonal. That is to say, if denote M(i),G(i) and S(i)

as the parts of M,G over Ωi and S over Σi ,, then

M = blockdiag[M(1),M(2), ...,M(n)]

with similar forms for G and S.
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An Associated Iteration Method - n disjoint meshes

The remaining term contains the (artificial) boundary conditions on the individual
Ωi ’s

[E(i)]m,n =
∑
i

∫
Σi

vmLi

(
IR [Fi ; un,Φ]

)
ds

as well as the nonlocal coupling due to the representation of the outgoing fields

[C(i,j)]m,n =
∑
i

∫
Σi

vmLi

(
IR [Fj ; un,Φ]

)
ds.

The system matrix is then written as

A = G− k2M− iλS− B

where

B =


E(1) C(1,2) . . . C(1,n)

C(2,1) E(2) . . . C(2,n)

...
...

. . .
...

C(n,1) C(n,2) . . . E(n)

 .
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An Associated Iteration Method - n disjoint meshes

The entire system is then given by

Ax = L

where L is the column vector

L =


L(1)

L(2)

...
L(n)


defined as

[L(i)]n =

∫
Σi

vnLi

(
uinc
)
ds.

This is the straightforward all in one solve.
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An Associated Iteration Method - n disjoint meshes

Iteration Scheme

1 Determine an initial solution to the individual problems

(G(i) − k2M(i) − iλS(i) − B(i) − E(i))x (i)
0 = L(i)

2 Then, until some criteria solve for i = 1, ..., n

(G(i) − k2M(i) − iλS(i) − B(i) − E(i))x (i)
j = L(i) +

∑
i,j,i 6=j

C(i,j)x (i)
j−1.
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Numerical Results - Disjoint Mesh

Two circular scatterers

Once we have x
(1)
0 and x

(2)
0 , we solve

A(1)x (1)
j = L(1) + C(1,2)x (2)

j−1

and then

A(2)x (1)
j = L(2) + C(2,1)x (1)

j−1

for j = 1, ...

Two meshes
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Numerical Results - Disjoint Mesh

Two circular scatterers

Once we have x
(1)
0 and x

(2)
0 , we solve

A(1)x (1)
j = L(1) + C(1,2)x (2)

j−1

and then

A(2)x (1)
j = L(2) + C(2,1)x (1)

j−1

for j = 1, ...
Note:

A(i) = G(i) − k2M(i) − iλS(i) − B(i) − E(i).
Two meshes
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Numerical Results - Disjoint Mesh

Two circular scatterers

Once we have x
(1)
0 and x

(2)
0 , we solve

A(1)x (1)
j = L(1) + C(1,2)x (2)

j−1

and then

A(2)x (1)
j = L(2) + C(2,1)x (1)

j−1

for j = 1, ...
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Using j = 1, ..., 15 with k = 2π
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Summary

Concluding Remarks

Analysis is likely straightforward.

An associated iterative method appears to work well.

More (interesting) complicated problems.

THANKS!
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