A *Horn clause* is a clause containing at most one positive literal.

A *definite clause* contains exactly one positive literal.

Examples of a Horn Clause

\[\neg \text{CHILD}, \neg \text{MAIL}, \text{BOY} \]

Not a Horn Clause

\[\text{RAIN}, \text{SLEET}, \text{SNOW} \]

Some Observations

There is a derivation of a negative clause (including the empty clause) from a set of Horn clauses \(S \) iff there is one where each new clause in the derivation is a negative resolvent of the previous clause in the derivation and some element of \(S \).
SLD Resolution

For any set S of clauses, an SLD derivation of a clause c from S is a sequence of clauses c_1, c_2, \ldots, c_n such that $c_n = c$, $c_1 \in S$ and c_{i+1} is a resolvent of c_i and some clause of S. We write $S \vdash_{SLD} c$ if there is an SLD derivation of c from S.

if $S \vdash_{SLD} []$ then $S \vdash []$

For Horn clauses:

if $S \vdash_{SLD} []$ iff $S \vdash []$

Example

Toddler

Toddler \rightarrow Child

(Child \land Male) \rightarrow Boy

Infant \rightarrow Child

(Child \land Female) \rightarrow Girl

Female

Query

$KB \models$ Girl

Another Example: Lists

Constant NIL. Binary Function CONS, e.g., CONS(t_1, t_2)

Definition of APPEND(X,Y,Z)

APPEND(NIL, y, y)
APPEND(x, y, z) \rightarrow
APPEND(CONS(w, x), y, CONS(w, z))

We wish to show that this entails the following:

APPEND(CONS(a, CONS(a, NIL)), CONS(c, NIL), CONS(a, CONS(a, CONS(c, NIL))))

Back-Chaining procedure

Input: a finite list of atomic sentences, q_1, \ldots, q_n
Output: yes or no depending on whether a given KB entails all of the q_i

SOLVE[q_1, \ldots, q_n] =
If $n = 0$ then return yes
For each clause $c \in KB$, do
If $c = [q_1, \neg p_1, \ldots, \neg p_m]$ and
SOLVE[$p_1, \ldots, p_m, q_2, \ldots, q_n$]
then return yes
end for
Return no
Forward-Chaining procedure

Input: a finite list of atomic sentences, q_1, \ldots, q_n
Output: yes or no depending on whether a given KB entails all of the q_i

1. if all of the goals q_i are marked as solved, then return yes
2. check if there is a clause $[q_1, \neg p_1, \ldots, \neg p_n]$ in the KB, such that all of its negative atoms $\neg p_1, \ldots, \neg p_n$ are marked as solved, and such that the positive atom p is not marked as solved
3. if there is such a clause, mark p as solved and go to step 1
4. otherwise, return no