
Reasoning about the Interaction of Knowlege, Time and Concurrent Actions in the
Situation Calculus

Richard B. Scherl
Computer Science Department

Monmouth University
West Long Branch, New Jersey

07764-1898 U.S.A.
rscherl@monmouth.edu

Abstract

A formal framework for specifying and developing
agents/robots must handle not only knowledge and
sensing actions, but also time and concurrency. Re-
searchers have extended the situation calculus to
handle knowledge and sensing actions. Other re-
searchers have addressed the issue of adding time
and concurrent actions. Here both of these fea-
tures are combined into a unified logical theory of
knowledge, sensing, time, and concurrency. The re-
sult preserves the solution to the frame problem of
previous work, maintains the distinction between
indexical and objective knowledge of time, and is
capable of representing the various ways in which
concurrency interacts with time and knowledge.
Furthermore, a method based on regression is de-
veloped for solving the projection problem for the-
ories specified in this version of the situation calcu-
lus.

1 Introduction
The aim of this paper is to develop a unified approach for
axiomatizing the interaction of knowledge, sensing, time, and
concurrency. Actions have preconditions which may include
knowledge preconditions. Sensing actions alter knowledge.
The knowledge produced depends upon the relative time at
which sensing actions occur and also whether or not other
sorts of actions occur concurrently. All of this interacts with
the agent’s evolving knowledge of time.

Consider a robot gathering knowledge about its environ-
ment. It moves about while concurrently panning the camera
and at various points senses the environment for the presence
of objects with various characteristics. The knowledge ob-
tained through sensing (positions of objects of various sizes,
shapes and colors) depends upon the position of the robot at
a particular point in time, the angle of the camera, etc. For
many purposes, the results of sensing actions that occur at the
same time are important. Not only do we have the need for
two distinct concurrent sensing actions in binocular stereop-
sis, but also in the simultaneous use of other features such as
texture gradients and shading to achieve knowledge of depth
relationships. Here it is relative, not absolute time, that is
important.

Furthermore, specification of an agent’s ability to achieve
a goal in general involves requiring that the agent know what
to do to arrive at a goal state [Moore, 1980; Lespérance et
al., 2000]. As the ability to achieve particular goals will often
involve the ability to perform concurrent actions, the integra-
tion of knowledge and concurrency is an important step in
fully formalizing these aspects of ability.

We develop our framework within the situation calcu-
lus – a first-order formalism for representing and reasoning
about the effects of actions. The language is based upon
the dialect of the situation calculus used in the Cognitive
Robotics Group at the University of Toronto. Certainly, an-
other formalism could have been used. Within A.I. numer-
ous varying formalisms are available for nrepresenting and
reasoning about action (to name a few, [Shanahan, 1995;
Baral et al., 1997]). Knowledge has been incorporated
into a number of these (for example, [Lobo et al., 2001;
Thielscher, 2000]). Outside of A.I. proper, there is also [Fa-
gin et al., 1995] on the interaction of knowledge and time.

But by working in the situation calculus, we are able to
extend previous work on reasoning (by regression and theo-
rem proving) to cover the language developed here as well.
Furthermore, our work is suitable to be incorporated into the
robot programming languages GOLOG and CONGOLOG. It
can then be used to specify agents that must reason about the
interactions of time, knowledge, and concurrent actions (in-
cluding sensing actions).

The situation calculus [McCarthy and Hayes, 1969] is
a language for modeling dynamically changing worlds.
Changes to the world are the results of actions, while pos-
sible world histories consisting of sequences of actions are
represented by situations. The situation calculus can be
used for agent planning via goal regression. Reiter [Reiter,
1991] proposed a simple solution to the frame problem, an
approach to axiomatization within the situation calculus. Al-
though this approach to the frame problem requires certain
simplifying assumptions, it has proven to be useful and is the
foundation for both goal regression and the programming lan-
guage GOLOG. Goal regression was extended by Scherl and
Levesque[Scherl and Levesque, 2003] to apply to an agent
who can sense properties of the external world (e.g., read
numbers on a piece of paper or determine the shape of an
object).

This paper1 combines and extends the work of Scherl
and Levesque [Scherl and Levesque, 2003] incorporating the
model of concurrency and time presented by Reiter [Re-
iter, 2001]. At the same time, Reiter’s simple solution to
the frame problem is preserved. The real difficulty is to per-
form the synthesis in such a way that the important distinc-
tion between indexical and objective time [Lespérance and
Levesque, 1995] is preserved.

If the agent currently knows the absolute time, then he
knows the absolute time after executing an action. But if he
doesn’t know the absolute time, then he only knows that he
began executing the action some number of time units ago,
unless of course he reads a clock. While maintaining these
properties, the results presented here allow the representation
of the various ways in which actions (including sensing ac-
tions and possibly other concurrent actions) interact with time
and knowledge. The method of regression is also extended to
work with this augmented language.

Section 2 gives a quick introduction to the situation calcu-
lus and Section 3 does the same for the foundational axioms.
The representation of knowledge and sensing actions are cov-
ered in Section 4. Concurrency is integrated into the frame-
work in Section 5. Section 6 covers some additional con-
structs of the language and illustrates their representational
power. A number of properties of the formulation are dis-
cussed in Section 7. Regression is covered in Section 8. Fi-
nally, Section 9 is the conclusion.

2 Situation Calculus and the Frame Problem
Space does not permit a full exposition of the background
material on the situation calculus. The framework developed
in [Reiter, 2001] is followed and full details may be found
there or in [Scherl, 2003]. We assume that the frame problem
has been handled by utilizing successor state axioms.

3 Foundational Axioms
Following [Lin and Reiter, 1994; Reiter, 2001] the founda-
tional axioms for the situation calculus are utilized. These
axioms provide us with a definition of s � s ′, which says
that there is a sequence of zero or more executable actions
that move from situation s to situation s ′. Again, space does
not permit full development of this material here. Full details
may be found in [Reiter, 2001; Scherl, 2003].

4 An Epistemic Fluent
Scherl and Levesque [Scherl and Levesque, 2003] adapt the
standard possible-world model of knowledge to the situation
calculus, as first done by Moore[Moore, 1980]. Informally,
one can think of there being a binary accessibility relation
over situations, where a situation s′ is understood as being
accessible from a situation s if as far as the agent knows in sit-
uation s, he might be in situation s′. So something is known
in s if it is true in every s′ accessible from s, and conversely
something is not known if it is false in some accessible situa-
tion.

1An earlier version of some of this work has appeared in [Zim-
merbaum and Scherl, 2000].

To treat knowledge as a fluent, they introduce a binary rela-
tion K(s′, s), read as “s′ is accessible from s” and treat it the
same way we would any other fluent. In other words, from the
point of view of the situation calculus, the last argument to K
is the official situation argument (expressing what is known
in situation s), and the first argument is just an auxiliary like
the y in BROKEN(y, s).2

The notation Knows(P(now), s) (read as P is known in
situation s) can then be introduced as as an abbreviation for a
formula that uses K. For example

Knows(BROKEN(y, now), s) def= ∀s′ K(s′, s)
→ BROKEN(y, s′).

The special indexical now is instantiated with a situation vari-
able upon expansion.

The approach also handles actions that make known the
denotation of a term. For this case, one needs the notation
Kref(T(now), s) defined as follows:

Kref(T(now), s) def= ∃xKnows(T(now) = x, s)
where x does not appear in T.

In general, there may be many knowledge-producing ac-
tions, as well as many ordinary actions. To characterize all
of these, we have following the presentation in [Scherl and
Levesque, 2003], a function SR (for sensing result), and for
each action α, a sensing-result axiom of the form:

SR(α(�x), s) = r ≡ φα(�x, r, s) (1)

This result is “YES” if “Q” is true and “NO” otherwise. The
symbols are given in quotes to indicate that they are not flu-
ents. The sensing result function for SENSEQ is axiomatized
as follows:

SR(SENSEQ, s) = r ≡ (r = “YES” ∧ Q(s))
∨ (r = “NO” ∧ ¬Q(s))

(2)

For ordinary actions, the SR result is always the same, with
the specific result not being significant. For example, we
could have:

SR(PICKUP(x), s) = r ≡ r = “OK” (3)

In the case of a READτ action that makes the denotation of
the term τ known, we would have:

SR(READτ , s) = r ≡ r = τ(s) (4)

Therefore, τ has the same denotation in all worlds s ′′ such
that K(s′′, DO(READτ , s)), and so Kref(τ, DO(READτ , s))
is true.

The form of the successor state axiom for K without con-
currency is as follows:

K(s′′, (DO(a, s)) ≡
(∃ s′) s′′ = DO(a, s′)

∧ K(s′, s) ∧ POSS(a, s′)
∧ SR(a, s) = SR(a, s′)

(5)

The relation K at a particular situation DO(a, s) is completely
determined by the relation at s and the action a.

2Note that using this convention means that the arguments to K
are reversed from their normal modal logic use.

5 Concurrency
As originally defined in the situation calculus [McCarthy and
Hayes, 1969], actions had to occur sequentially, with one
action completed before another could begin. Furthermore,
there was no facility to deal with the continuous passage of
time. This contrasted with other formalisms such as the event
calculus which could naturally handle concurrent actions and
continuous time.

5.1 Concurrency with Knowledge
The work of Pinto [Pinto, 1994] and Reiter [Reiter, 2001]
proposed an approach to dealing with concurrency, natural
actions and continuous time while still maintaining the so-
lution to the frame problem. Reiter [Reiter, 2001] defined
a new sort concurrent, sets of simple actions. Variables
a, a′, .. represent the sort actions and c, c′, ... represent the
sort concurrent. In Reiter’s notation, the time of an action’s
occurrence is the value of that action’s temporal argument.
Thus an action has the form A(�x, t) and for each action an
axiom of the form TIME(A(�x, t)) = t is required to indicate
the time of the action.

Concurrent actions are sets of ordinary actions that are
taken to represent instantaneous acts. An action with dura-
tion is represented by two instantaneous actions — a start ac-
tion and an end action. Additionally, the foundational axioms
are modified to rule out the possibility of prior actions having
later times.

So if we want to represent a PRESSING action with duration
(as in pressing a button that keeps a light on), the approach
is to define two actions; STARTPRESS and ENDPRESS. We
also must introduce a fluent PRESSING. The needed succes-
sor state axiom is as follows:

PRESSING(DO(a, s)) ≡
a = STARTPRESS ∨

(PRESSING(s) ∧ a �= ENDPRESS)
(6)

This approach to representing actions with duration is some-
thing that we make use of here.

But, the use of a temporal argument for actions is problem-
atic in the presence of knowledge. Given our successor state
axiom for K, it would require the agent to know the time after
any action, even if it was unknown in the previous situation.
To avoid this, we can not represent time as an argument to the
instantaneous actions.

Instead, we represent the instantaneous actions and asso-
ciated times as a tuple of the form < a, t > with functions
ACTION and TIME defined, returning the first and second ele-
ments of the tuple:

ACTION(< a, t >) = a (7)

TIME(< a, t >) = t (8)

These pairs, represented by variables p, p ′, ... are elements of
the sort action-time pairs. Concurrent Actions are now a set
of such tuples. The sort action contains actions without a
temporal argument.

We also have the following

START(DO(p, s)) = TIME(p) (9)

which is needed to relate the time of the action/time pair to
the start of a situation. There may also be an axiom giving the
start time of the initial situation S0. We also define a variant
notation:

TIME(DO(p, s)) = TIME(p) (10)

We adopt, without significant change, Reiter’s requirement
that concurrent actions be coherent, that is there is at least one
action-time pair p in the collection, and the time of all pairs
in the collection is the same:

COHERENT(c) ≡
(∃ p) p ε c ∧ (∃t)(∀p′)[p′ ε c → TIME(p′) = t].

(11)
A set of action-time pairs are coherent if each of them have
the same time component.

The definition of time can readily be extended to sets of
concurrent actions and this allows us to define the function
start of a situation resulting from the execution of a concur-
rent action.

COHERENT(c) →
[TIME(c) = t ≡ ∃p (p ∈ c ∧ TIME(p) = t)]
∧ START(do(c, s)) = TIME(c)].

(12)
The predicate POSS(c, s) means that it is possible to exe-

cute concurrent action c in situation s.

POSS(ACTION(p), s) ∧ TIME(p) > TIME(s)
→ POSS(p, s), (13)

POSS(p, s) → POSS({p}, s), (14)

POSS(c, s) → COHERENT(c) ∧ (∀p) [p ε c → POSS(p, s)].
(15)

If it is possible to execute a concurrent actions, then it is co-
herent and each of the simple actions is possible.

We implicitly assume an additional sort ranging over time
points which can be integers, rationals or reals; depending on
how one wants to model time. The standard Arabic numerals
are used to represent time points. Additionally, the symbols
for addition and subtraction are interpreted as the usual oper-
ations on numbers (integers, reals etc.)

5.2 Precondition Interactions
We need to be able to conclude when a particular concurrent
action c is possible in a situation c in order for the machinery
being developed in the rest of this paper to work. Unfortu-
nately, Sentence 15 does not suffice. The conditional can not
be changed to a biconditional because of the precondition in-
teraction problem [Pinto, 1994; 1998].

This issue needs to be handled by the axiomatizer of the
domain. For example, the axiomatizer might provide the fol-
lowing axiom:

POSS({p1, p2}, s) ≡
POSS(ACTION(a1), s) ∧ POSS(ACTION(a2), s)∧
¬PRECINT(a1, a2) ∧ COHERENT({p1, p2})

(16)
As discussed in [Pinto, 1994; 1998], the axiomatization of
PRECINT is domain dependent and can be done at increasing
levels of detail.

For the purposes of this paper, the point here is that what-
ever solution is used for the precondition interaction problem
in the ordinary situation calculus carries over to the case of
knowledge and sensing.

5.3 Successor State Axiom for K with
Concurrency

The Successor State Axiom for K using concurrency can be
stated in several alternative ways depending on what condi-
tions one wishes to apply regarding the agent’s knowledge of
time. We continue to require that the relation K at a particular
situation DO(c, s) is completely determined by the relation at
s and the set of concurrent actions c.

The following successor state axiom models an agent who
knows how much time is passing3. This is an agent who has
an accurate clock.

K(s′′, (DO(c, s)) ≡
(∃s′, c′) s′′ = DO(c′, s′) ∧ K(s′, s) ∧ POSS(c′, s′)
∧ (∀p′) p′ ε c′ (∃ p) p ε c
∧ ACTION(p′) = ACTION(p)
∧ (∀p) p ε c (∃ p′) p′ ε c′

∧ ACTION(p) = ACTION(p′)
∧ START(s′′) = START(s′) + (TIME(c) − START(s))
∧ (∀p) p ε c →

SR(ACTION(p), s) = SR(ACTION(p), s′)
(17)

After executing a set of concurrent actions c in situation s,
as far as the agent knows, it could be in a situation s ′′ iff s′′
is the result of performing c′ in some previously accessible
situation s′, provided that c is possible in s′ and that s′ is
identical to s in terms of what is being sensed. Furthermore,
it is required that the concurrent action c ′ being performed in
all situations accessible from s be identical to c in terms of
the individual actions that make up the set.

Note that it is not required that the TIME of the actions in all
the accessible situations be identical. If this were the case, it
would force the agent to know the objective time after execut-
ing any action. Rather, it is only required that the difference
between the start of the current situation and the start of the
previous situation be the same in all accessible situations (in-
cluding the actual situation). This requirement does ensure
that the agent knows how much time is passing, but the ob-
jective time is only known if it was known before the action
has occurred.

5.4 Concurrency and Sensing
One can readily imagine cases of sensing actions where
the desired result of sensing (knowing whether or not some
proposition holds) depends upon some other action occurring
concurrently. For example, the light needs to be turned on
while the camera is clicked. If the light is off, then sensing
produces no knowledge.

Consider representing, the requirement that the light switch
be pressed while SENSEP occurs for the knowledge of
whether or not P holds to result from the execution of
SENSEP. We need to define a predicate SCOND.

SCOND(SENSEP, s) ≡ PRESSING(s) (18)

3Other possibilities are considered in [Scherl, 2003].

Now the successor state axiom for K needs to be modified
to include SCOND as well.

K(s′′, (DO(c, s)) ≡
(∃s′, c′) s′′ = DO(c′, s′) ∧ K(s′, s) ∧ POSS(c′, s′)

∧ (∀p′) p′ ε c′ (∃ p) p ε c
∧ ACTION(p′) = ACTION(p)
∧ (∀p) p ε c (∃ p′) p′ ε c′

∧ ACTION(p) = ACTION(p′)
∧ START(s′′) = START(s′) + (TIME(c) − START(s))
∧ (∀p) p ε c∧

(SCOND(ACTION(p), s) ∧ SCOND(ACTION(p), s′) →
SR(ACTION(p), s) = SR(ACTION(p), s′)

(19)
For every action an appropriate SCON axiom needs to be

written. For most actions, the action is simply:

SCOND(a, s) ≡ T (20)

6 The Language and Examples
6.1 Further Constructs
We need some way to refer to the current time without speci-
fying the value of the current time. To achieve this we use the
special indexical term now. Upon expansion the term is re-
placed with the appropriate situation term. So, START(now)
can be used to refer to the current time. Here we illustrate by
example. The agent’s knowing the objective time is expressed
as ∃t Know(start(now) = t , s). This expands into

∃t ∀s′(K(s′, s) → START(s′) = t).

We augment our language with a number of additional ex-
pressions. These are based on ideas developed by Lesperance
and Levesque [Lespérance and Levesque, 1995] and require
the use of the notion of precedence of situations as defined
earlier. Note that we distinguish between the < relation on
integers used to represent time points and the ≺ relations
on situations as defined in the foundational axioms for the
situation calculus.

The macro Happened is introduced to allow one to talk
about an action occurring at a particular time point.

Happened(t, Act, s) def= (∃c, s′, s′′) s′′ = DO(c, s′) ∧ ∃p ε c
∧ ACTION(p) = Act ∧ TIME(p) = t∧

s′′ � s ∧ s′ ≺ s′′
(21)

It specifies that an action occurred prior to s and it was time t
at some point during the action’s duration.

The macro Wasat is introduced to allow one to assert that
a fluent was true at a particular point in time.

Wasat(t, P(then), s) def= (∃s′)P (then){s′/then}∧
t = START(s′) ∨ t > START(s′)
∧ ¬(∃s′′) s′ ≺ s′′ ≺ s ∧ START(s′′) ≤ t

(22)
It specifies that P held at s′ and t was the time of s′ or s′ pre-
ceded t and no other situation after s ′ preceded t. Here we
introduce another special indexical then which is needed to
ensure that the correct situation is substituted into the situa-
tion argument of the predicate which is the middle argument
to Wasat.

7 Properties of the Formulation
First of all, we show that the distinction between indexical
and objective time is preserved.
Proposition 1 (Persistence of Ignorance of Objective Time)
For all situations s, if ¬∃t Know(START(now) = t , s)
then in do(c, s) where c is any concurrent action it is also
the case that ¬∃t Know(START(now) = t , s) unless there
is some a ∈ c with an SR axiom equivalent to the following:

SR(a, s) = r ≡ r = TIME(s)
Proposition 2 (Persistence of Knowledge of Objective Time)
For all situations s, if ∃t Know(start(now) = t , s) then in
do(c, s) where c is any concurrent action it is also the case
that ∃t Know(start(now) = t , s)
Even if agents do not know the objective time, they do know
how much time has passed since the last occurrence of a par-
ticular action or the last time at which a particular fluent was
true.
Proposition 3 (Knowledge of Indexical Time 1)
For every, Act such that Act occurs in s,
∃t Knows(∃t′Happened(t′, Act, now)∧

(TIME(now) − t′ = t, s)
Proposition 4 (Knowledge of Indexical Time 2) For every
P such that there is some s′ ≺ s such that P (s′) holds,
∃t Knows(∃t′Wasat(t′, P(then), now)∧

(TIME(now) − t′ = t, s)
Additionally, the crucial results of [Scherl and Levesque,
2003] carry over to the case considered here. These include
Proposition 5 (Default Persistence of Ignorance) For an
action α and a situation s, if ¬Knows(P, s) holds and the
axiomatization entails

∀s P(s) ≡ P(DO(α, s))
and

∀y ¬Knows((POSS(α) ∧ SR(α) = y) → P, s)
then

¬Knows(P, DO(α, s))
holds as well.

Proposition 6 (Knowledge Incorporation) For a
knowledge-producing action α, a fluent or the negation
of a fluent F, a fluent or the negation of a fluent P, and a
situation s, if the axiomatization entails

∃y Knows(F ≡ SR(α) = y, s)
and also

F(s), POSS(α, s),
and

Knows(F → P, s)
hold, then

Knows(P, DO(α, s))
holds as well.

Proposition 7 (Memory) For all fluents P and situations s,
if Knows(P, s) holds then Knows(P, DO(α, s)) holds as long
as the axiomatization entails

∀s P(s) ≡ P(DO(α, s))
These results ensure that actions only affect knowledge in the
appropriate way.

8 Reasoning
A regression operator R is defined relative to a set of suc-
cessor state axioms Θ. Space limitations here only allow a
sketch of the regression operators. Full details may be found
in [Scherl, 2003].

The operators satisfy the following regression theorem:

Theorem 1 For any ground situation term sgr and formula
G:

F |= G(sgr) iff F − Fss |= R∗
Θ[G(sgr)]

Here F is the initial axiomatization of the domain and Fss is
the set of successor state axioms.

8.1 Regression Operators
The regression operator R is defined relative to a set of suc-
cessor state axioms Θ. The first four parts of the definition
of the regression operator RΘ concern ordinary (i.e. not
knowledge-producing) actions [Reiter, 2001]. They are ex-
actly the same as those in [Reiter, 2001]. Additionally, it is
necessary to correctly regress the equality predicate as dis-
cussed in [Scherl and Levesque, 2003; Reiter, 2001].

Additional steps are needed to extend the regression op-
erator to knowledge-producing actions. Two definitions are
needed for the specification to follow. When ϕ is an arbitrary
sentence and s a situation term, then ϕ[s] is the sentence that
results from instantiating every occurrence of now in ϕ with
s′. The reverse operation ϕ−1 is the result of instantiating
every occurrence of s′ in ϕ with now.

Step v covers the case of regressing the Knows operator
through a non-knowledge-producing action. Step vi covers
the case of regressing the Knows operator through a knowl-
edge producing action. In the definitions below, s ′ is a new
situation variable.

v. Whenever c does not contain a knowledge-producing ac-
tion,
RΘ[Knows(W, DO(c, s))] = Knows(POSS(c) →
RΘ[W[DO(trans(c), s′)]]−1, s).

vi. Whenever c does contain a knowledge-producing action,
RΘ[Knows(W, DO(c, s))] =
∃y SR(SENSEi, s) = y ∧

Knows((POSS(c) ∧ SR(SENSEi) = y) →
RΘ[W [DO(trans(c))]]−1, s)

The special function trans replaces c with a c′ that has the
identical action in each of the action-time pairs. But it re-
places the time portion with a relative time. This is an ex-
pression of the form (3 = TIME(now)). So, if c occurs in
a situation term of the form DO(c, s) and TIME(c) is 7 and
START(s) is 4, then the 7 in the time part of every action-
time pair in c would be replaced by (3 = TIME(now)). These
are properly handled by the operators for regressing equality
predicates.

The regression operators for Happened and Wasat follow:

viii.

R[Happened(t, Act, DO(c, s))] =
(Happened(t,Act, s) ∧ t ≤ START(s))
∨ ∃p ε c (ACTION(p) = Act ∧ t = START(DO(c, s)))

ix.

R[Wasat(t, W, DO(c, s))] =
(Wasat(t,W, s) ∧ t < START(s))
∨ (W (s) ∧ t ≥ START(s) ∧ t < START(DO(c, s)))

The end result of regression is a sentence (possibly much
larger) in a language without actions. The language is a
modal language with both temporal and epistemic operators.

9 Conclusions
The results reported in this paper can be combined with
Concurrent, Temporal Golog or RGolog[Reiter, 2001] or
CONGOLOG[Giacomo et al., 1997] to specify and control
an agent (such as the robot discussed in Section 1) that con-
currently moves about its environment and performs various
actions including sensing actions. Future work will address
the issue of developing a good theorem proving method for
the language resulting from regression. This method needs to
combine modal theorem proving with a method for solving
integer constraints.

Acknowledgments
Numerous helpful discussions have been held with Yves
Lespérance on many of the topics covered in this paper. Use-
ful suggestions made by Patrick Doherty, Daniele Nardi, and
a number of anonymous reviewers of earlier versions of this
paper have been incorporated. Additional thanks are due to
Steve Zimmerbaum with whom the initial stages of this work
were carried out. This research was partially supported by
NSF grants SES-9819116 and CISE-9818309.

References
[Baral et al., 1997] Chitta Baral, Michael Gelfond, and

Alessandro Provetti. Representing actions: Laws, obser-
vations and hypotheses. Journal of Logic Programming,
31(1-3):201–243, 1997.

[Fagin et al., 1995] R. Fagin, J.Y. Halpern, Y.O. Moses, and
M.Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, Mass, 1995.

[Giacomo et al., 1997] G. De Giacomo, Y. Lespérance, and
H. J. Levesque. Reasoning about concurrent execution,
prioritized interrupts, and exogeneous actions in the situa-
tion calculus. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, Nagoya, Japan,
1997.

[Lespérance and Levesque, 1995] Yves Lespérance and
Hector Levesque. Indexical knowledge and robot action—
a logical account. Artificial Intelligence, 73(1-2):69–115,
February 1995.

[Lespérance et al., 2000] Yves Lespérance, Hector J.
Levesque, Fangzhen Lin, and Richard B. Scherl. Ability
and knowing how in the situation calculus. Studia Logica,
66(1), 2000.

[Lin and Reiter, 1994] Fangzhen Lin and Raymond Reiter.
State constraints revisited. Journal of Logic and Compu-
tation, 4(5):655–678, 1994.

[Lobo et al., 2001] Jorge Lobo, Gisela Mendez, and Stuart
Taylor. Knowledge and the action description languageA.
Journal of Logic Programming, 1(2):129–184, 2001.

[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes.
Some philosophical problems from the standpoint of ar-
tificial intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence 4, pages 463–502. Edinburgh Uni-
versity Press, Edinburgh, UK, 1969.

[Moore, 1980] R.C. Moore. Reasoning about knowledge and
action. Technical Note 191, SRI International, October
1980.

[Pinto, 1994] J.A. Pinto. Temporal Reasoning in the Sit-
uation Calculus. PhD thesis, Department of Computer
Science, University of Toronto, Toronto, Ontario, 1994.
Available as technical report KRR-TR-94-1.

[Pinto, 1998] Javier A. Pinto. Concurrent actions and inter-
acting effects. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Sixth International
Conference (KR-98), pages 292–303. Morgan Kaufmann
Publishing, 1998.

[Reiter, 1991] Raymond Reiter. The frame problem in the
situation calculus: A simple solution (sometimes) and a
completeness result for goal regression. In Vladimir Lifs-
chitz, editor, Artificial Intelligence and Mathematical The-
ory of Computation: Papers in Honor of John McCarthy,
pages 359–380. Academic Press, San Diego, CA, 1991.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. The MIT Press, Cambridge, Massachusetts,
2001.

[Scherl and Levesque, 2003] Richard Scherl and Hector
Levesque. Knowledge, action, and the frame problem. Ar-
tificial Intelligence, 144:1–39, 2003.

[Scherl, 2003] Richard Scherl. Axiomatizing the interaction
of knowledge, time, and concurrency with the situation
calculus. journal version in progress, 2003.

[Shanahan, 1995] Murray Shanahan. A circumscriptive cal-
culus of events. Artificial Intelligence, 77(2):249–284,
September 1995.

[Thielscher, 2000] Michael Thielscher. Representing the
knowledge of a robot. In A. Cohn, F. Giunchiglia,
and B. Selman, editors, Proceedings of the International
Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 109–120. Morgan Kaufmann,
2000.

[Zimmerbaum and Scherl, 2000] Stephen Zimmerbaum and
Richard Scherl. Knowledge, time, and concurrency in the
situation calculus. In C. Castelfranchi and Y. Lespérance,
editors, Intelligent Agents VII: Proceedings of the 2000
Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL-2000), LNAI, Berlin, 2000. Springer-
Verlag.

