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Abstract

The goal of our approach to textual inference is to an-
swer queries about events and dates reported in texts;
queries that demand inferencing with the relevant back-
ground knowledge. Our primary knowledge representa-
tion language is AnsProlog. The core inference engine
is a combination of AnsProlog and Constraint Logic
programming. AnsProlog is particularly useful for the
representation of defaults, causal relations, and other
types of common-sense knowledge. Constraint Logic
Programming is needed to solve constraints involving
the relationship between the sequence of actions and
the dates on which the actions may have occurred. The
combination of the two creates a useful tool for answer-
ing queries over texts and in particular queries that in-
volve relatively deep reasoning.

Introduction and Motivation
We envision a query answering system which is given a text
of some sort. This text may be typed into the system by the
user or it may have been retrieved by a search engine looking
for sources of information relevant to a query.

After the text is processed by the system, the user may
then ask particular queries pertaining to the information in
the text. Often the text will describe a series of actions or
events and the queries that the user wishes to pose will con-
cern the truth of various facts about the world after these
events have taken place or while they are occurring. An-
swering those questions demands commonsense reasoning
and the use of commonsense knowledge about the world.
Generally, this commonsense knowledge is not contained in
the actual text.

The approach is to initially translate the natural language
text (which we assume is in English) and the user’s query
(also in English) into an appropriate knowledge representa-
tion language. A knowledge base, also in the same knowl-
edge representation language, is available. The knowledge
base needs to contain both commonsense and perhaps some
expert knowledge about the relevant domains. Then the in-
ference engine answers the user’s query by reasoning with
both the representation of the information contained in the
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text and the background knowledge base. Finally, an answer
is returned to the user.

Here we propose a knowledge representation language
and an inference engine suitable for such a query answer-
ing system. As the core knowledge representation language,
we propose AnsProlog - a language of logic programs un-
der the answer set semantics (Gelfond & Lifschitz 1988;
1991). This language is especially useful if answering the
query requires sophisticated kinds of reasoning such as de-
fault, causal, counterfactual reasoning, reasoning about nar-
ratives, etc.

The list of attractive properties of AnsProlog include its
simplicity and expressive power, ability to reason with in-
complete information, existence of a well developed mathe-
matical theory and programming methodology (Baral 2003),
and the availability of rather efficient reasoning systems
such as SMODELS(Niemela & Simons 1997b) and others
as well(Niemela & Simons 1997a; Lierler & Maratea 2004).
AnsProlog allows its users to encode defaults, causal rela-
tions, inheritance hierarchies, and other types of knowledge
not readily available in other KR languages. There is also a
well developed methodology for representing dynamic do-
mains (Baral & Gelfond 2000; Turner 1997). In addition, it
supports the construction of elaboration tolerant knowledge
bases, i.e., ability to accommodate new knowledge without
doing large scale surgery.

The main drawback of the language is the inability of its
current inference engines to effectively deal with numbers
and numerical computations. This is because the current an-
swer set solvers start their computation with grounding the
program, i.e. replacing its variables by possible ground in-
stantiations. The grounding algorithms are smart and capa-
ble of eliminating many useless rules; answer sets can be
effectively computed even if the resulting program consists
of hundreds of thousands of rules. However, if several inte-
ger variables are used by the program rules, the size of the
grounded program becomes unmanageable.

Here we are concentrating on reasoning about texts that
involve actions and time. We not only have to reason about
the sequence of steps (individual actions) and what facts are
true after each step, but we also need to reason about dates
and times. Since the number of dates is relatively large, the
use of several rules that contain date variables quickly be-
comes prohibitively inefficient. The same problem that oc-



curs in general with numerical computations occurs in par-
ticular with reasoning about dates and times.

We propose an architecture that combines the use of
AnsProlog with (CLP) Constraint Logic Programming(Jaf-
far & Lassez 1987; Van Hentenryk 1989; Marriott &
Stuckey 1998; Frühwirth & Abdennadher 2002). CLP al-
lows the use of efficient solvers over large and possibly infi-
nite domains while still preserving the declarative properties
of logic programming. The CLP portion determines which
action steps correspond to which dates.

Our implementation makes use of this combination of
AnsProlog and CLP. We have used the SMODELS imple-
mentation of AnsProlog and the CLP module contained in
Sicstus1 Prolog. We have also built a background theory in
AnsProlog sufficient to reason about a travel domain. This
paper describes the architecture of our reasoning system and
the background travel domain. It does not cover the transla-
tion of natural language text and queries into the AnsProlog,
nor does it cover the translation of the AnsProlog output into
natural language. These are the topics of our current and fu-
ture work.

Examples
Here is a simple example (Scenario 1) to illustrate the prob-
lem with which we are concerned.

John is in Paris. On March 15th he packs his laptop
in the carry-on luggage and takes a plane to Baghdad.
Was his laptop in Baghdad on March 16th?

Depending on the time of the day, that John leaves Paris, he
may arrive in Baghdad on either March 15th or March 16th.
But it is a reasonable default assumption that in the absence
of additional information John and his laptop remained in
Baghdad after arriving. So, the desired answer is yes.

But consider a variation on the above, Scenario 2.

On March 15th John took the plane from Paris to Bagh-
dad. On the way the plane stopped in Rome, where
John was arrested. Is John in Baghdad on March 16th?

Here we want to say no, because the arrest action would
generally prevent John from continuing on to Baghdad. The
location of the laptop is more complex, but a good answer is
no. Of course to obtain this answer (rather than unknown),
it is necessary to represent the background rule (a defeasible
rule) that when someone is arrested on a plane, the person’s
carry-on luggage is taken off.

We now introduce, AnsProlog and show how these exam-
ples can be represented in that language.

Syntax and Semantics of AnsProlog
An AnsProlog knowledge base consists of rules of the form:

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (*)

where each of the lis is a literal, i.e. an atom, a, or its classi-
cal negation, -a and not is a logical connective called nega-
tion as failure or default negation. While -a states that a

1http://www.sics.se/sicstus

is false, an expression not l says that there is no reason to
believe in l.

The answer set semantics of a logic program Π assigns to Π
a collection of answer sets – consistent sets of ground liter-
als corresponding to beliefs which can be built by a rational
reasoner on the basis of rules of Π. In the construction of
these beliefs the reasoner is guided by the following infor-
mal principles:

• He should satisfy the rules of Π, understood as constraints
of the form: If one believes in the body of a rule one must
belief in its head.

• He should adhere to the rationality principle which says
that one shall not believe anything he is not forced to be-
lieve.

The precise definition of answer sets is first given for pro-
grams whose rules do not contain default negation. Let Π
be such a program and X a consistent set of ground liter-
als. Set X is closed under Π if, for every rule (*) of Π,
l0 ∈ X whenever for every 1 ≤ i ≤ m, li ∈ X and for
every m + 1 ≤ j ≤ n, lj �∈ X .

Definition 1 (Answer set – part one)
A state X of σ(Π) is an answer set for Π if X is minimal (in
the sense of set-theoretic inclusion) among the sets closed
under Π.

To extend this definition to arbitrary programs, take any pro-
gram Π, and consistent set X of ground literals. The reduct,
ΠX , of Π relative to X is the set of rules

l0 ← l1, . . . , lm

for all rules (*) in Π such that lm+1, . . . , ln �∈ X . Thus ΠX

is a program without default negation.

Definition 2 (Answer set – part two)
X is an answer set for Π if X is an answer set for ΠX .

Given, the translation of a text and a background theory,
the initial task of inferencing in AnsProlog is to compute
all of the answer sets or models of the text and background
theory. To determine whether a fact follows from our text
and background theory, it is necessary to have a definition
of entailment.

Definition 3 (Entailment)
A program Π entails a literal l (Π |= l) if l belongs to all
answer sets of Π.
The Π’s answer to a query l is yes if Π |= l, no if Π |= l, and
unknown otherwise.

Given an AnsProlog program Π, the output of an imple-
mentation of AnsProlog such as SMODELS is a set of the
answer sets of the program Π. Each of the answer sets is
represented by a listing of the ground literals true in that an-
swer set. The output can be quite large, but the user can
restrict the output to see the specific results that are relevant
to his/her purposes.

Note that the language of AnsProlog includes both nega-
tion as failure (not), and logical negation (-). This is impor-
tant as the two together are used to represent defaults. Many
examples of this combination occur in the next sections.



Representing Travel Events
It is necessary to represent in AnsProlog the information
contained in the scenarios as well as the needed common-
sense background information about people, places, travel-
ing, and the effects of traveling from one place to another.
Since facts about the world will be true at some points and
false in others, a mechanism to distinguish between points
in time is needed. Dates can not be used here as we would
then end up with AnsProlog atoms containing variables with
very large domains. This is not feasible given the grounding
mechanism of AnsProlog inference systems such as SMOD-
ELS. The reasoning about dates is reserved for the CSP pro-
gram.

We use integers to represent step points between the ba-
sic actions that can be performed. A limit does need to be
set on the number of step points needed. For the examples
discussed in this paper, the limit was set to 5, but for more
complicated examples a higher limit would be needed.

A basic object of this module is a trip, i.e., a short jour-
ney over a set route. We also need locations. The clauses
trip(J) and location(L) are used to specify that a
term is the name of a trip or a location. The name can be
anything, but generally, we use a term constructed out of the
starting city and the destination, e.g., j(boston,paris).
We also need the special position en route to indicate that
a trip is in transit or between stops.

A description of a trip’s planned route is then given simply
by a list of atoms such as stop(j, l0, 0), ...., stop(j, lk, k)
which specifies the stops of the trip j at location li. In-
termediate stops may be unspecified, but we do require the
specification of the location of the origin (l0) and the desti-
nation (lk).

We view a trip as an object that is “performing” actions.
There are two main actions a trip can perform. One is de-
parting from its current location depart(j) and the other
is stopping at a particular location stop(j,L).

Properties of the world that change over time (as actions
occur) are called fluents. For example, the fluent at as in
at(J,Pos) represents that a particular trip J is at a par-
ticular position Pos. Positions include both locations (i.e,
cities) and the special position en route. Therefore our
theory of trips now contains several types; actions, fluents,
steps, locations, trips and also people, luggage, travel doc-
uments, and modes of transportation. Our Smodels imple-
mentation declares typed variables with all of these types.

We use the relations h (for holds) and o (for occurs)
as the basis for our action theory. The first argument of h is
a fluent and the second is a step point. For example,
h(at(john,en route),3) asserts that at step 3, John
is at position en route. Similarly, the first argument of
o is an action term and the second is a step point. So,
o(arrest(john),3) asserts that at step 3 John was ar-
rested.

Background Information
A background module using the conventions developed
above is needed to represent information about the effect that
various actions in this travel domain have on the truth of the

fluents as well as the default behavior of trips. The follow-
ing are a number of our dynamic causal laws that represent
the inferences (but defeasible inferences) that may be drawn
in this domain. We must omit many of the details here, but
the examples below should give an idea of the capability of
AnsProlog to represent our commonsense knowledge of the
travel domain.

After the departure, trip J is en route:

h(at(J,en_route),S+1) :- o(depart(J),S).

Normally after stops, trips continue on to their next stop,
unless the destination has been reached.

o(stop(J,C),T) :-
h(at(J,en_route),T),
next_stop(J,C),
not -o(stop(J,C),T).

o(depart(J),T+1) :-
o(stop(J,C),T),
not dest(J,C),
not -o(depart(J),T+1).

The position of an object is unique:

-h(at(O,Pos1),S) :-
h(at(O,Pos2),S),
neq(Pos1,Pos2).

The following axioms specify inertia, that things tend to
stay as they are (unless of course something occurs to change
them).

h(F1,S+1) :- h(F1,S),
not -h(F1,S+1).

-h(F1,S+1) :- -h(F1,S),
not h(F1,S+1).

These axioms allow us to solve the frame problem(Mc-
Carthy & Hayes 1969).

We can also make some typical default assumptions about
travelers. For example, unless otherwise noted, the traveler
already has his/her passport and luggage.

h(has(P,passport(P)),0) :-
not -h(has(P,passport(P)),0).

h(has(P,Luggage),0) :-
owns(P,Luggage),
not -h(has(P,Luggage),0).

When someone, a person P embarks on a trip he/she be-
comes a participant.

h(participant(P,J),T+1) :-
o(embark(P,J),T).

The status of being a participant persists by default. It ends
when the trip ends:

-h(participant(P,J),T+1) :-
o(disembark(P,J),T).

Also, it may be terminated if certain actions occur.

-h(participant(P,F),T+1) :-
o(arrest(P),T).

Being arrested during the course of the trip is one such event.
The status of being a participant is important since partic-

ipants share the location of the trip.



h(at(P,D),T) :-
h(participant(P,J),T), h(at(J,D),T).

Personal Possessions are attached to a person and objects in
containers share the location with the container.

h(at(PP,D),T) :-
h(has(P,PP),T), h(at(P,D),T).

h(has(P,PP),T) :-
h(inside(PP,Container),T),
h(has(P,Container),T).

Representation of the Examples
Scenario 1 is translated into AnsProlog as follows: The
translation of John is in Paris is

h(at(john,paris),0).

It simply states that the fluent at(john,paris) holds at
step 0. The sentence On March 15th he packs his laptop
in the carry-on luggage and takes a plane to Baghdad is
represented by the following three AnsProlog clauses.

o(pack(john,laptop(john),
carry_on(john)),0).

h(trip_by(j(paris,baghdad),plane),1).
o(go_on(john,j(paris,baghdad)),1).

The first clause states that the trip named
j(paris,baghdad) begins at step point 1 and is
by plane. The second clause states that john goes on that
trip at step point 1.

For the time being we are ignoring the information about
dates in the text. This information will be incorporated in
the next section.

When we take the translation of Scenario 1, along with
the background travel theory, the output from an AnsPro-
log inference engine such as Smodels is a list of all of the
true ground literals in the single answer set of the program
(translation of the scenario and the background travel the-
ory). These will include the following:

.

.
o(disembark(john,j(paris,baghdad)),4)
o(stop(j(paris,baghdad),baghdad),3)
h(at(laptop(john),baghdad),5)
-o(stop(j(paris,baghdad),baghdad),5)

.

.

Although the full listing of the answer set
is very large it does contain the literal
h(at(laptop(john),baghdad),5) which indi-
cates that John’s laptop is in Baghdad at step 5. Since in this
case we only have one answer set, the answer to our query
Was his laptop in Baghdad on March 16th? is true as long
as step 5 can be identified with the correct date.

Constraints about Dates and Time Points
It is now necessary to represent the information that we do
have about the correspondence of step points with dates.
This information is represented as Prolog clauses as it
will be used by the CLP program to be discussed next.

For example, we may know the day and month of step
point 0. This can be expressed with time(0,d,15) and
time(0,m,3). These clauses state that the time of step
point 0 in units d (day) is 15 and in units m (month) is 3
(i.e., March). When we have a full date (including the year),
we can convert the full date from our calendar (Gregorian
calendar) into a fixed day number (Rata Die) as described
by (Reingold & Dershowitz 2001). This conversion sim-
plifies reasoning about leap years and the number of days
in months. Reasoning about dates (year, month, day) re-
duces to reasoning about days. Additionally, other calen-
drical systems can also be converted into fixed day num-
bers. In this case March 15, 2004 would be indicated as
time(0,rd,731655). We have a small Prolog program
that allows us to convert in both directions between Grego-
rian dates and fixed day numbers.

Additionally, it is necessary to represent information
about event duration. For example.

duration(Action,d,0) :-
one_day_action(Action).

one_day_action(pack(_,_,_)).
one_day_action(embark(P,J)) :-

person(P), trip(J).
duration_interval(get(P,passport(P)),

d,3,21).

The CLP program has to assign dates (e.g. days and
months) to step points while still satisfying constraints in-
volving the above information. We have written a CLP pro-
gram incorporating the following constraints:

Constraint 1 The assignment must respect the assertion of
facts of the form time(I,Unit,X) as in time(0,d,15).

Constraint 2 The assignment must respect the assertion of
facts of the form time interval(I, Unit, First, Last). These
facts express the constraint that a particular step I must
occur within the open interval First . . . Last, measutred in
unit Unit.

Constraint 3 The assignment must respect facts of the form
duration(Action, Unit, D) which assert that action Action
takes D duration when measured in Unit units.

Constraint 4 The assignment must respect all assertions of
the form duration interval(Action, Unit, Min, Max).

Constraint 5 If step I < step J, then time I ≤ time J.

The output of the CLP module is an assignment of dates
to time steps. It is possible that there are multiple legal as-
signments.

Putting the Pieces Together

The final step is to pose the query to the query module (writ-
ten in Prolog). The output of SMODELS is transformed into
a set of Prolog clauses that can be simply loaded into Prolog
for access by the query module as well as the CSP module.
Finally, the query module matches the date to the time point
and then queries the answer sets.



Examples Completed
It is necessary to add the information about dates and times
for the two scenarios. This information is needed by the
CLP program and the constraints listed above must take it
into account. Part of the translation of the text is the fact
that step points 0 and 1 both correspond to March 15. If
we include the year, March 15, 2004 converts to fixed day
number 731655. We need to add time(0,d,15) and
time(0,m,3) or time(0,rd,731655). It is also nec-
essary to add duration(j(paris,baghdad),d,1)
to indicate that traveling from Paris to Baghdad takes 1 day.
(A more accurate axiomatization would represent the dura-
tion in time and allow the possibility that a traveler would
leave earlier in the day and arrive on the same day.) In Sce-
nario 1, step 5 is matched to March 15th. Therefore the
answer to our query is yes, since in the only answer set for
Scenario 1, the laptop is in Baghdad at step 5. Note that
if the fixed day numbers are used, step 5 would match to
731656 and this day number converts to March 16th 2005 in
the Gregorian calendar.

For Scenario 2, a variation on Scenario 1, the translation
is as follows:

h(at(john,paris),0).
h(trip_by(j(paris,baghdad),plane),1).
o(go_on(john,j(paris,baghdad)),1).

The translation of On the way the plane stopped in Rome,
where John was arrested. is translated into the following
two clauses.

o(stop(j(paris,baghdad),rome),2)
o(arrest(john),3)

Note that the beginning of the translation of Scenario 2, is
effectively identical to that for Scenario 1. But the answer to
the query is no, because John is not in Baghdad at any step
in the scenario. This is because the trip has been interrupted.
A defeasible conclusion drawn in Scenario 1, has been de-
feated in Scenario 2. The labeling of the step points here is
not significant and works essentially in the same fashion as
in Scenario 1.

In general, unknown or possible may also be an answer
when there are models or labelings of step points in which
the query is true and also in which the query is false. We
have also extened the approach to work with time (i.e.,
hours, minutes and seconds) in addition to dates.

Summary
In conclusion, we feel that the combination of AnsPro-
log and CLP provides a powerful representation language
and inference engine for domains involving reasoning about
actions and time. Our implementation combines Prolog,
SMODELS (for AnsProlog inferencing) and the CSP library
of Sicstus Prolog (for reasoning over the domain of dates).
The two scenarios used to illustrate the method could not
have been handled by either of the methods alone.

The following are extensions to this work which form the
subject of our current and future research.

• Automate the translation of English to the AnsProlog rep-
resentation for both texts and queries.

• Extend the approach to handle queries involving temporal
relations (e.g. precedence, containment) of actions and of
periods when particular fluents are true.
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