Object-Oriented Representation

• Knowledge as structured and organized in terms of what the knowledge is about, the objects of knowledge.

• Objects with parts, constraints

• Frame (Minsky 1975)
Frames

- Individual Frames – to represent single objects
- Generic Frames – to represent categories of objects.
- slots, fillers

(Frame-name
 <slot-name1 filler1>
 <slot-name2 filler2>
 )

Knowledge Fusion Fall 2004
Individual Frames: Example

(tripLeg123
 <:INSTANCE-OF TripLeg>
 <:Destination toronto>..)

(toronto
 <:INSTANCE-OF CanadianCity>
 <:Province ontario>
 <:Population 4.5M>..)
(CanadianCity
 <:IS-A City>
 <:Province CanadianProvince>
 <:County canada>..)

(Table
 <:Clearance [IF-NEEDED ComputeClearanceFromLeg...
 ...

(Lecture
 <:DayOfWeek WeekDay>
 <:Date [IF-ADDED ComputeDayOfWeek]>..
 ..)
Inheritance

(Table
 <:Clearance [IF-NEEDED ComputeClearanceFromLegs...])

(CoffeeTable
 <:IS-A Table>...)

(MahoganyCoffeeTable
 <:IS-A CoffeeTable>..)
Inheritance (defaults)

(Elephant
 <:IS-A Mammal>
 <:EarSize large>
 <:Color gray>...)

(raja
 <:INSTANCE-OF Elephant>
 <:EarSize small>..)

(RoyalElephant
 <:IS-A Elephant>
 <:Color white>...)

(clyde
 <:INSTANCE-OF RoyalElephant>
 ..)
Reasoning with Frames

1. a user or external system declares that an object exists, thereby instantiating some generic frame;

2. any slot fillers that are not provided explicitly, but can be inherited, are computed;

3. for each slot with a filler, any **IF-ADDED** procedure that can be inherited is run, possibly causing new slots to be filled, or new frames to be instantiated, and the cycle repeats.
Description Logics

• Objects fall into classes.
• Some classes are more general than others.
• Objects have parts.
• concepts, roles constants
Logical Symbols

1. *punctuation*: “[”, “]”, “(”, “)”;
2. *positive integers*: 1, 2, 3, etc.
3. *concept-forming operators*:
 “ALL”, “EXISTS”, “FILLS”, “AND”;
Non-Logical Symbols

1. *atomic concepts*: written in capitalized mixed case, e.g., *Person*, *WhiteWine*, *FatherOfOnlyDaughters*; and a special atomic concept *Thing*.

2. *roles*: written like atomic concepts, but preceded by “:”, e.g., :Child, :Height, :Employer, :Arm.

3. *constants*: written in uncapitalized mixed case, e.g. *table13*, *maryAnnJones*.
Syntactic expressions

There are four types of syntactic expressions:

1. *constants*
2. *roles*
3. *concepts*
4. *sentences*
The set of concepts of \mathcal{DL} is the least set satisfying:

- every atomic concept is a concept;
- if r is a role and d is a concept, then $[\text{ALL } r \ d]$ is a concept;
- if r is a role and n is a positive integer, then $[\text{EXISTS } n \ r]$ is a concept;
- if r is a role and c is a constant then, $[\text{FILLS } r \ c]$ is a concept;
- if $d_1 \ldots d_n$ are concepts, then $[\text{AND } d_1 \ldots d_n]$ is a concept;
Sentences

• if d_1 and d_2 are concepts, then $[d_1 \sqsubseteq d_2]$ is a sentence;

• if d_1 and d_2 are concepts, then $[d_1 \equiv d_2]$ is a sentence;

• if c is a constant and d a concept, then $[c \to d]$ is a sentence.
Examples: Concepts

[EXISTS n r]

[EXISTS 1 : Child]

[FILLS r c]

[EXISTS : Cousin vinny]

[ALL r d]

[ALL : Employee UnionMember]
Examples (cont)

\[
\text{[ANDWine} \\
\text{[FILLS :Color red]} \\
\text{[EXISTS 2 :GrapeType]}\]
\]
Examples: Sentences

\[(d_1 \sqsubseteq d_2)\]

(Surgeon \sqsubseteq Doctor)

\[(d_1 \models d_2)\]

\[(d_1 \rightarrow d_2)\]

(ProgressiveCompany \models

\[\text{AND} \text{Company}
\[\text{EXISTS} \ 7 : \text{Director}\]
\[\text{ALL} \ 7 : \text{Manager}[\text{AND} \ \text{Woman}
\[\text{FILLS} : \text{Degree phD}]]
\[\text{FILLS} : \text{MinSalary} \$24.00/hour]]\]
An interpretation \mathcal{I} for DL is a pair

$$\langle D, I \rangle$$

where D is any set of objects called the domain of the interpretation

and

I is a mapping called the interpretation mapping from the non-logical symbols of DL to elements and relations over D.
where

1. for every constant symbol c, $\mathcal{I}[c] \in \mathcal{D}$;
2. for every atomic concept a, $\mathcal{I}[a] \subseteq \mathcal{D}$;
3. for every role symbol r, $\mathcal{I}[c] \subseteq \mathcal{D} \times \mathcal{D}$;
Extending I

- $\mathcal{I}[$thing$]$

- $\mathcal{I}[$ALL r d]$]

- $\mathcal{I}[$EXISTS n r]$]

- $\mathcal{I}[$FILLS r c]$]

- $\mathcal{I}[$AND$d_1\ldots d_n$]$]
Truth in an Interpretation

Given an interpretation \mathcal{I}, we say that α is true in \mathcal{I}, or $\mathcal{I} \models \alpha$ according to the following rules.

1. $\mathcal{I} \models (c \rightarrow d)$ iff $\mathcal{I}[c] \in \mathcal{I}[d]$
2. $\mathcal{I} \models (d \subseteq d')$ iff $\mathcal{I}[d] \subseteq \mathcal{I}[d']$
3. $\mathcal{I} \models (d \equiv d')$ iff $\mathcal{I}[d] = \mathcal{I}[d']$

Assuming that d and d' are concepts, and c is a constant.