Reasoning

\[P \rightarrow Q \]

- *data-directed reasoning.* reasoning from P to Q. If we assert P, then we assert Q.

- *goal-directed reasoning.* reasoning from Q to P. Given the goal Q, we establish the goal P.
A production system is a forward-chaining reasoning system that uses rules of a certain form called production rules.

A production system keeps an ongoing memory of assertions called working memory – WM. The WM is constantly changing.

A Production Rule has two parts an antecedent made up of a set of conditions and a consequent made up of a set of actions to be taken if the antecedent conditions are true.

IF conditions THEN actions]
Cycle of Operations

1. **recognize** Which rules are applicable?
2. **resolve conflict** Which rules execute?
3. **act** Alter the working memory.
Working Memory

Working Memory Elements (WMEs)

\((\text{type} \, \text{attribute}_1 : \text{value}_1 \ldots \text{attribute}_n : \text{value}_n)\)

- (person age:30 home:RedBank)
- (goal task:putDown importance:5 urgency:1)

\[\exists x [\text{TYPE}(x) \land \text{ATTRIBUTE}_1(x) = \text{value}_1 \land \ldots \land \text{ATTRIBUTE}_n(x) = \text{value}_n]\]
Production Rules

Conditions

\((\text{type attribute}_1: \text{specification}_1 \ldots \text{attribute}_n: \text{specification}_n)\)

Each specification is one of the following:

- an atom
- a variable
- an evaluable expression within \([\]\)
- a test, within
- , the conjunction, disjunction, or negation of a specification

\((\text{person age}:[n+4] \text{ occupation}: x)\)
Production Rules (cont)

Actions

• **ADD** *pattern* : Add the new WME specified by *pattern*.

• **REMOVE** *i* Remove the WME that matched the *i*th condition of the antecedent of the rule.

• **MODIFY** *i attribute specification* Modify the WME that matched the *i*th condition in the antecedent by replacing its value for *attribute* by *specification*
Example

IF (student name:x) THEN ADD (person name: x)

IF (person age:x name:n) (birthday who:n)
THEN MODIFY 1 (age[x + 1])
REMOVE 2
Another Example

(counter value:1)
(brick name:A size:10 position:heap)
(brick name:B size:30 position:heap)
(brick name:C size:20 position:heap)

1) IF (brick position:heap name:n size:s)
 -(brick position:heap size:{>s})
 -(brick position:hand)
 THEN MODIFY 1 (position hand)

2) IF (brick position:hand)
 (counter value:i)
 THEN MODIFY 1(position i)
 MODIFY 2(value[i+1])
Conflict Resolution

In doing goal directed reasoning, if more than one rule can fire, how do we pick the rule to execute.

- *random*
- *order*
- *specificity*
- *recency*
- *refractoriness*
Efficiency

- Matching is costly
- RETE algorithm
Summary

- Expert Systems
- Psychological Modeling
- Modularity, Simple Control Structure, Transparency.
- Applications