
Prolog

Prolog was invented in the early 1970s by
Alan Colmerauer and his colleagues in
Marseille: Their major interest was
Natural Language Processing. The
deductive mechanism behind Prolog is
based on Robert Kowalski’s work on
refinements of resolution (SLD) for Horn
clauses.

• NJIT has Sicstus Prolog developed by the
Swedish Institute of Computer Science.
http://www.sics.se

• An excellent Prolog - Amzi Logic Explorer
free for PCS(Both Linux and Windows).
http://www.amzi.com

Knowledge Fusion Fall 2004 1

References

• Learn Prolog Now! by Patrick Blackburn,
Johan Bos and Kristina Striegnitz

• Chapters 5 and 6 of Brachman and Levesque

• Introduction to Programming in Prolog by
Danny Crookes. NewYork: Prentice Hall 1988

• Programming in Prolog by W.F.Clocksin and
C.S. Mellish Fourth Edition. Berlin:
Springe-verlag 1994

Knowledge Fusion Fall 2004 2

Horn Clauses

Horn Clauses are clauses that have at
most one positive literal. If there is one
positive literal, then the clause is a rule
whose consequent is the single positve
literal and whose antecedent is a
conjunction of positive literals.

• Rules H :- B1,....Bn

• A fact is a single postiive literal.
Facts H :-

• A goal (query) is a conjunction of negative
literals.
Goals :- B1,...Bn

Knowledge Fusion Fall 2004 3

Interaction

The user submits questions to the prolog
system and receives answers based on
information contained in the database of
facts, and the rules that have been loaded
into the prolog system.

Knowledge Fusion Fall 2004 4

Interaction

Knowledge Fusion Fall 2004 5

A Sample Database

has_vacancy(harvard, secretary).

has_vacancy(prentice_hall, author).

has_vacancy(ibm, salesman).

has_vacancy(hertz, driver).

has_vacancy(nasa, programmer).

has_vacancy(prentice_hall, secretary).

trained_as(michael, programmer).

trained_as(fred, taxidermist).

trained_as(mary, driver).

trained_as(joe, secretary).

trained_as(michael, salesman).

trained_as(elizabeth, secretary).

Knowledge Fusion Fall 2004 6

DB Continued

accurate(elizabeth).

accurate(mary).

accurate(michael).

accurate(fred).

outgoing(michael).

outgoing(mary).

outgoing(elizabeth).

co_ordinated(joe)

hard_working(mary)

hard_working(joe).

hard_working(michael).

literate(michael).

clear_thinking(elizabeth).

clear_thinking(michael))

intelligent(mary).

imaginative(michael).

Knowledge Fusion Fall 2004 7

Queries

• ?-clear thinking(elizabeth).

• ?-clear thinking(fred).

• ?-clear thinking(X)

• ?-imaginative(X), hard working(X).

Knowledge Fusion Fall 2004 8

Queries Continued

Note that if there is more than one object
satisfying the query, the user can type a
semicolon (;) afer the answer and prolog will
search for another binding for the variables. This
can continue until prolog can not find another
binding. It will then return no.

But Prolog can do much more than mere retrieval
of facts!

Knowledge Fusion Fall 2004 9

Prolog Rules

NASA might employ someone if that person is
clear thinking and reliable.

might_employ(nasa, X) :-

clear_thinking(X),

accurate(X).

?- might_employ(nasa, elizabeth).

Yes

?- might_employ(nasa,fred).

No

? might_employ(nasa, X).

X=elizabeth;

X=michael;

No

Knowledge Fusion Fall 2004 10

Rules Continued

If the above rule is added to the database other
plausible rules are:

acceptable(Candidate, Employer, Skill) :-

has_vacancy(Employer, Skill),

trained_as(Candidate, Skill).

acceptable(Candidate, Emplooyer, Skill) :-

has_vacancy(Employer, Skill),

\+(trained_as(Candidate, Skill),

could_be_trained_as(Candidate, Skill)

could_be_trained_as(X, secretary) :-

accurate(X),

literate(X),

outgoing(X).

could_be_trained_as(X, programmer) :-

clean_thinking(X),

accurate(X),

intelligent(X).

could_be_tranined_as(X, driver):-

co_ordinated(X)

hard_working(X),

Knowledge Fusion Fall 2004 11

Examples

?-could_be_trained_as(michael, secretary).

?-could_be_trained_as(mary, programmer).

Knowledge Fusion Fall 2004 12

Negation

Note that the

\+

is the negation operator in Sicstus Prolog. In
Amzi prolog the negation operator is the standard
not as in not (member(X, [a,b,c]))

Knowledge Fusion Fall 2004 13

Using Prolog

Type your program into a file and save it. Save it
with the suffix pl as in kb.pl. Then enter prolog.

?- listing.

?- [kb2].

?- listing.

?- halt.

Knowledge Fusion Fall 2004 14

A Family

male(philip). male(charles). female(liz).

child_of(charles, philip).

child_of(charles, liz).

parent_of(philip,charles).

parent_of(liz,charles).

father_of(X,Y):- parent_of(X,Y),

male(X)

Knowledge Fusion Fall 2004 15

Descendant

Consider the problem of trying to specify the
concept of descendant.

descendant_of(X,Y) :- child_of(X,Y).

descendant_of(X,Y) :- grandchild_of(X,Y).

descendant_of(X,Y) :- great_grandchild_of(X,Y).

grandchild_of(X,Y) :- child_of(X,Z),

child_of(Z,Y)

great_grandcdhild_of(X,Y) :- child_of(X,Z),

grandchild_of(Z,Y).

great_great_grandchild_of(X,Y) :- child_of(X,Z),

great_grandchild_of(Z,X).

Tedious !, Incomplete ! descendants of
Y are Y’s children, along with their
descendants

Knowledge Fusion Fall 2004 16

Recursive Rules

But with recursive rules this is easy.

X is a descendant of Y either if X is a
child of Y, or if X is a descendant of a
child of Y.

descendant_of(X,Y) :- child_of(X,Y).

descendant_of(X,Y) :- child_of(C,Y),

descendant_of(X,C).

?- descendant_of(X, elizabeth).

Knowledge Fusion Fall 2004 17

Structured Objects

Use of term structure enables one to fully utilize

relatively simple expressivity of Prolog.

Object-kind(component1, component2,)

1. date(Day,Month, Year)

date(31, january, 1988)

date(25, december,1990)

Knowledge Fusion Fall 2004 18

Structured Objects

2. meal(starter, main course, desert)

main_course(steak, peas,chips)

meal(starter(melon, ginger),

main_course(steak, peas, chips),

desert(peaches, cream))

Knowledge Fusion Fall 2004 19

Structured Objects Continued

3.

book(Author, Title, Classifcation)

book(shakespeare, macbeth, qt-13....)

date_of_birth(Person, Date)

date_of_birth(fred, date(1, february, 1959)).

date_of_birth(shakespeare, date(26, april, 1564)

?- date_of_birth(shakespeare, D).

D= date(26, april, 1564)).

?- date_of_birth(P, date(26, april, 1564)).

P=shakespeare

Knowledge Fusion Fall 2004 20

Example: Library Catalogue

in_library(book(melville,

moby_dick,

4r_14_s8)).

in_library(book (shakespeare,

romeo_and_juliet,

4r_49_s35)).

on_loan(Book, Borrower, Due_date).

on_loan(book (melville,

moby_dick, 4r_14_s8),

robinson,

date(21, november, 1988)).

on_loan(book(shakespeare,

romeo_and_juliet, 4r_49_s25),

wilson,

date(7, september, 1988)).

Knowledge Fusion Fall 2004 21

Lists

But the most important structured object
of all is the List – treated specially in
Prolog.

[] - empty list

[tennis, baseball, sailing, reading, judo]

[computing, programming, prolog, AI]

[tennis | X]

Knowledge Fusion Fall 2004 22

Lists Cont

(compare as : head , tail) The head of the list
above is tennis and X is the tail. Example:

all_rich(List)

A list is all rich if

either

the list is empty

or

the list has the structure [Person1 | Tail]

and

Person1 is rich

and

Tail is all rich.

all_rich([]).

all_rich([Person1 | Tail]) :- rich(Person1),

all_rich(Tail).

Knowledge Fusion Fall 2004 23

Example: Member

A very simple program defines the member relation

Definition of Member

member(X, [X | _]).

member(X, [_ | Y]) : - member(X,Y).

?- member(d, [a,b,c,d,e,f,g]).

YES

?- member(2, [3,a,4,f]).

NO

Knowledge Fusion Fall 2004 24

Example: Append

Another very simple function definds the append re

append([],L,L).

append([X|L1], L2, [X | L3])

: - append(L1, L2, L3).

?- append(X,Y,[a, b,c]).

X= []

Y= [a, b, c]?;

X= [a];

Y= [b, c]?;

X= [a, b],

y= [c]?;

X= [a, b ,c],

Y= []?;

no

Knowledge Fusion Fall 2004 25

Arithmetic

variable is expression

?- X is 2 * 8 + 5.

X=21

?- X is 12, X is 10.

no.

?- X is 12, Y is 3 * X -1.

X=12, Y=35.

Knowledge Fusion Fall 2004 26

DB Continued

in_range(N, Lower, Upper)

:- N >= Lower, N <= Upper.

?- in_range(10, 1 ,100)

Yes

?- in_range(0, 1,10)

No.

Sum of a List

Sum([],0)

Sum([Head | Tail], S) :- Sum(Tail, T),

S is Head + T.

Knowledge Fusion Fall 2004 27

Cut!

foo :- a, b, c, !, d, e, f

When a cut is encountered as a goal, the
system thereupon becomes committed to
all choices made since the parent goal was
invoked. All other alternatives are
discarded. Hence an attempt to re-satisfy
any goal between the parent goal and the
cut goal will fail.

facility(Pers, Fac):-

book_overdue(Pers, Book),

!,

basic_facility(Fac).

Knowledge Fusion Fall 2004 28

Cut Continued

facility(Pers, Fac):- general_facility(Fac).

basic_facility(references).

basic_facility(enquiries).

additional_facility(borrowing).

additional_facility(inter_library_loan).

general_facility(X) :- basic_facility(X).

general_facility(X) :- additional_facility(X).

book_overdue(’C.Watzer’, book10089).

book_overdue(’R.Scherl’, book29907).

client(’A. Sones’).

client(’R.Scherl’).

?-client(X), Facility(X,Y).

Knowledge Fusion Fall 2004 29

