We want answers!!

$$
K B \models \alpha
$$

Given $\beta\left[x_{1}, \ldots, x_{n}\right]$ where x_{1}, \ldots, x_{n} are free variables, we want to find the terms (ground) t_{1}, \ldots, t_{n} such that:

$$
K B \models \beta\left[t_{1}, \ldots, t_{n}\right]
$$

Some Observations

$$
\begin{gathered}
K B \models \alpha \\
\text { iff } \\
\models\left[\left(\alpha_{1} \wedge \ldots \wedge \alpha_{n}\right) \rightarrow \alpha\right] \\
\text { eff } \\
K B \cup\{\neg \alpha\} \text { is not satisfiable } \\
\text { eff } \\
K B \cup\{\neg \alpha\} \models \neg T R U E
\end{gathered}
$$

Propositional Logic

All predicates of 0 -arity.

$\Im=\mathcal{I}$
$\mathcal{I}[P]=o$ or $\mathcal{I}[P]=1$ or

Propositional Logic: Conjunctive Normal Form

$$
(\mathrm{P} \vee \neg \mathrm{Q}) \wedge(\mathrm{Q} \vee \mathrm{R})
$$

Clausal Form

$$
\{[\mathrm{P}, \neg \mathrm{Q}],[\mathrm{Q}, \mathrm{R}]\}
$$

Transformation to Conjunctive Normal Form

1. eliminate \rightarrow and \equiv by making use of the fact that they are abbreviations for formulas using only \wedge, \vee and \neg.
2. move \neg inwards so that it applies to only atoms, by using the following equivalences:

$$
\begin{aligned}
& \models \neg \neg \alpha \equiv \alpha \\
& \models \neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \\
& \models \neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta)
\end{aligned}
$$

3. distribute \wedge over \vee using the following equivalences:

$$
\begin{aligned}
& \models(\alpha \vee(\beta \wedge \gamma)) \equiv((\beta \wedge \gamma) \vee \alpha) \\
\models & ((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \equiv((\beta \wedge \gamma) \vee \alpha)
\end{aligned}
$$

4. collapse identical atoms, using the following equivalences:

$$
\begin{aligned}
& (\alpha \vee \alpha) \equiv \alpha \\
& (\alpha \wedge \alpha) \equiv \alpha
\end{aligned}
$$

Clauses

literal An atom or the negation of an atom. clause A finite set of literals.

$$
\begin{gathered}
{[\neg \mathrm{R}]} \\
{[\mathrm{P}, \neg \mathrm{Q}, \mathrm{R}]}
\end{gathered}
$$

clausal formula A finite set of clauses.

$$
[\mathrm{P}, \neg \mathrm{Q}, \mathrm{R}],[\mathrm{S}]
$$

empty clause [] False

Some Notation

complement if L is any literal, then $\overline{\mathrm{L}}$ is the complement of L . unit clause

$[\neg \mathrm{Q}]$
[Q]

Example

$$
(\mathrm{P} \wedge(\mathrm{Q} \rightarrow \mathrm{R}) \rightarrow \mathrm{S})
$$

Our Approach

We want to know whether or not $K B \models \alpha$

1. Put the sentences in $K B$ and $\neg \alpha$ into clausal form.
2. Determine whether or not the resulting set of clauses is satisfiable.

Resolution Inference Rule

$$
\frac{c_{1} \cup\{l\}, c_{2} \cup\{\bar{l}\}}{c_{1} \cup c_{2}}
$$

resolvent

Soundness and Completeness

Sound

$$
\begin{aligned}
& \text { If } S \vdash C \\
& \text { then } S \models c
\end{aligned}
$$

Complete

$$
\begin{aligned}
& \text { If } S \models C \\
& \text { then } S \vdash c
\end{aligned}
$$

Refutational Completeness Completeness

We do have:

$$
\begin{gathered}
\text { If } S \vdash[] \\
\text { iff } S \models[] \\
S \text { is unsatisfiable } \\
\text { iff } S \vdash[]
\end{gathered}
$$

Resolution Derivation

- A Resolution Derivation of a clause c from a set of clauses S is a sequence of clauses c_{1}, \ldots, c_{n} where the last clause c_{n} is c and where each c_{i} is either an element of S or a resolvent of earlier clauses in the derivation.
- $S \vdash c$

A Resolution Procedure

Input: a finite set S of propositional clauses
Output: satisfiable or unsatisfiable

1. Check if []$\in S$; if so, return unsatisfiable.
2. Otherwise, check if there are two clauses in S, such that they resolve to produce another clause not already in S; if not, return satisfiable
3. Otherwise, add the new resolvent clause to S, and go back to step 1.

Example

Mon \rightarrow MEeting

(Tues \vee Wed) \rightarrow Meeting
Mon v Tues

Example (cont)

[\neg Wed, Meeting]

[Tues, Mon] $\quad[\neg$ Mon, Meeting] $\quad[\neg$ Tues, Meeting] $\quad[\rightarrow$ Meeting]

Clausal form for 1'st Order Logic

$$
\{[\mathrm{P}(x), \neg \mathrm{R}(\mathrm{~A}, \mathrm{~F}(\mathrm{~B}, x))],[\mathrm{Q}(z, y)]\}
$$

Converting to Clausal Form

1. eliminate \rightarrow and \equiv as before.
2. move \neg inwards so that it applies to only atoms, by using the previous equivalences and also:

$$
\begin{aligned}
& \models \neg \forall x . \alpha \equiv \exists x . \neg \alpha \\
& \models \neg \exists x . \alpha \equiv \forall x . \neg \alpha
\end{aligned}
$$

3. standardize variables apart by renaming as necessary

$$
\begin{aligned}
& \models \forall y \cdot \alpha \equiv \forall x \cdot \alpha_{x}^{y} \\
& \models \exists y \cdot \alpha \equiv \exists x \cdot \alpha_{x}^{y}
\end{aligned}
$$

4. Eliminate existentials through Skolemization.

Converting to Clausal Form (cont)

5. move universals outside the scope of \wedge and \vee using the following equivalences:

$$
\begin{aligned}
& \models(\alpha \wedge \forall x . \beta) \equiv \forall x .(\alpha \wedge \beta) \\
& \models(\alpha \vee \forall x . \beta) \equiv \forall x \cdot(\alpha \vee \beta)
\end{aligned}
$$

6. distribute \wedge over \vee as before.
7. collapse identical atoms, as before.

Substitution

A substitution θ is a finite set of pairs

$$
\left\{x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right\}
$$

where the x_{i} are distinct variables and the $t_{i} \mathrm{~s}$ are arbitrary terms.

Example:

$$
\begin{gathered}
\theta=\{x / \mathrm{A}, y / \mathrm{G}(x, \mathrm{~B}, z)\} \\
\mathrm{P}(x, z, \mathrm{~F}(x, y)) \theta
\end{gathered}
$$

ground clause, ground literal, ground term

First-Order Resolution Rule

$$
\frac{c_{1} \cup\left\{l_{1}\right\}, c_{2} \cup\left\{l_{2}\right\}}{\left(c_{1} \cup c_{2}\right) \theta}
$$

As long as there is a substitution θ such that $l_{1} \theta=\bar{l}_{2} \theta$
unifier, unifies
resolvent

Example

Three Blocks Stacked

Top one is green.

Bottom one is not green.

Is there a green block directly on top of a non-green block?

Example (cont)

$[\mathrm{On}(\mathrm{b}, \mathrm{c})] \quad[\neg \mathrm{On}(\mathrm{x}, \mathrm{y}), \neg \operatorname{Green}(\mathrm{x})$, Green $(\mathrm{y})]$

Skolemization

Replace existentials by new function symbols.
$\exists x \operatorname{Red}(x)$ is replaced by $\operatorname{Red}(\mathrm{A})$
where A is a new constant symbol that does not occur anywhere else in our database.

In general:

$$
\forall x_{1}\left(\ldots \forall x_{2}\left(\ldots \forall x_{3}(\ldots \exists y[\ldots y \ldots] \ldots) \ldots\right) \ldots\right)
$$

$\forall x_{1}\left(\ldots \forall x_{2}\left(\ldots \forall x_{3}\left(\ldots\left[\ldots \mathrm{~F}\left(x_{1}, x_{2}, x_{3}\right) \ldots\right] \ldots\right) \ldots\right) \ldots\right)$

Herbrand Theorem

Given a set S of clauses, the Herbrand universe of S is the set of all ground terms formed with the function symbols (including constants) in S.

Assume we have the 0 -arity function symbols A, B, and the unary function symbol G, what is the Herbrand Universe.

Herbrand Theorem (cont)

The Herbrand base of S is the set of all ground clauses c θ where c $\in S$ and θ assigns the variables in C to terms in the Herbrand universe. Theorem: A set of clauses is satisfiable iff its Herbrand base is satisfiable.

Most General Unifier

A most general unifier (MGU) θ of literals l_{1} and l_{2} is a unifier that has the property that for any other unifier θ^{\prime}, there is a further substitution θ^{*} such that $\theta^{\prime}=\theta \theta^{*}$

Can limit the resolution rule to MGUs and still maintain completeness.

Completeness

Decidability

- Entailment is decidable for propositional logic. It is not decidable for first-order logic. But it is semidecidable.
- Satisfiability for propositional logic is decidable.
- Satisfiability for first-order logic is not decidable, but is semidecidable.
- What do we do?

SAT Solvers

Propositional Logic

1. Satisfiability is NP-complete
2. No polynomial algorithm is known. Yet in practice satisfiability testers get good performance.
3. Algorithms include Davis Putnam, GSAT.
4. Many practical applications.
