- First-Order Logic, FOL, FOPC
- Definition of entailment.
- Inference Methods
- Formal language, well understood
- Not the only possibility

Language

- 1. Syntax
- 2. Semantics
- 3. Pragmatics

Punctuation "(", ")", "." Connectives Negation \neg Conjunction \land Disjunction \lor Quantifiers \forall, \exists Equality =

Variables, an infinite supply of symbols x, x_1, x_2, \ldots

Predicate Symbols An infinite supply of symbols for each arity.

Dog

OlderThan

Function Symbols An infinite supply of symbols for each arity.

BESTFRIEND

CHARLIEPACK

The set of terms of FOL is the least set satisfying these conditions.

- 1. Every variable is a term.
- 2. If t_1, t_2, \ldots, t_n are terms and f is a function of arity n, then $f(t_1, t_2, \ldots, t_n)$ is a term.

The set of formulas of FOL is the least set satisfying these conditions.

- 1. If t_1, t_2, \ldots, t_n are terms and P is a predicate symbol of arity n, then $P(t_1, t_2, \ldots, t_n)$ is a formula.
- 2. If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula.
- 3. If α and β are formulas, and x is a variable, then $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $\forall x.\alpha$, and $\exists x.\alpha$ are formulas.

atomic formulas, atoms well formed formulasm, wffs.

- All predicates of arity 0.
- No terms (no function symbols, no variables).
- No quantifiers.

implication \rightarrow , \supset

equivalence \equiv

Terminology

- Bound Variable
- Free Variable
- Sentence

An interpretation \Im in FOL is a pair $\langle \mathcal{D}, \mathcal{I} \rangle$

- D is called the domain of interpretation. It is any non-empty set of objects.
- *I* is the interpretation mapping from the non-logical symbols to functions and relations over *D*.

$$\mathcal{I}[\mathrm{P}] \subseteq \mathcal{D} \times \ldots \mathcal{D}$$

$$\mathcal{I}[F] \subseteq \mathcal{D} \times \ldots \mathcal{D} \to \mathcal{D}$$

variable assignment μ over \mathcal{D}

- 1. If x is a variable then $\llbracket x \rrbracket_{\Im,\mu} = \mu[x]$
- 2. If t_1, \ldots, t_n are terms, and F is a function symbol of arity n then

 $\llbracket F(t_1, \ldots t_n) \rrbracket_{\mathfrak{S}, \mu} = \mathcal{I}(F)(\llbracket t_i \rrbracket_{\mathfrak{S}, \mu}, \ldots, \llbracket t_i \rrbracket_{\mathfrak{S}, \mu})$

- 1. $\Im, \mu \models P(t_1 \dots t_n)$ iff $\langle d_1, \dots, d_n \rangle \in \mathcal{I}(\mathbf{P})$, where $d_i = \llbracket t_i \rrbracket_{\Im, \mu}$
- 2. $\Im, \mu \models t_1 = t_2$ iff $\llbracket t_1 \rrbracket_{\Im,\mu}$ and $\llbracket t_2 \rrbracket_{\Im,\mu}$ and are the same element of D.
- 3. $\mathfrak{S}, \mu \models \neg \alpha$ iff it is not the case that $\mathfrak{S}, \mu \models \alpha$
- 4. $\Im, \mu \models (\alpha \land \beta)$ iff $\Im, \mu \models \alpha$ and $\Im, \mu \models \beta$.
- 5. $\Im, \mu \models (\alpha \lor \beta)$ iff $\Im, \mu \models \alpha$ or $\Im, \mu \models \beta$.
- 6. $\Im, \mu \models \exists x.\alpha \text{ iff } \Im, \mu' \models \alpha \text{ for some variable}$ assignment μ' that differs from μ on at most x.
- 7. $\Im, \mu \models \forall x.\alpha \text{ iff } \Im, \mu' \models \alpha \text{ for every variable}$ assignment μ' that differs from μ on at most x.

- Logical Consequence, Logical Entailment
- Satisfiable
- Unsatisfiable
- Sound
- Complete