Problem: Related data exists in many places and in many forms. They talk about the same things, but differ in the model, schema, or terminology.

Goal: To provide a uniform interface to a multitude of data sources.
Three Approaches

1. **Federated Databases**: The sources are independent, but one source can call the other.

2. **Warehousing**: Make copies of information at each data source centrally.
 - Reconstruct data at regular intervals (daily/weekly/monthly), but it is never up-to-date.

3. **Mediation**: Create a view of all information, but do not make copies.
 - Answer queries by sending appropriate queries to the sources.
Mediator Approach

- Users pose queries in terms of a mediated schema.

- There must be some description of the relationship between the source relations and the mediated schema.

- The query processor must be able to reformulate a query posed in terms of the mediated schema into a query against the source schemas.

- Use a restricted form of first-order logic;
Conjunctive Queries

\[q(\bar{X}) : - e_1(\bar{X}_1), \ldots, e_n(\bar{X}_n) \]

where \(e_1, \ldots, e_n \) are database relations, and \(\bar{X}_1, \ldots, \bar{X}_n \) are database relations and \(\bar{X}_1, \ldots, \bar{X}_n \) are tuples of variables and constants.

Queries with unions are expressed by multiple rules with the same head predicate.

A view refers to a named query, and it is said to be materialized if its results are stored in the database.
A query Q_1 is said to be contained in a query Q_2, denoted $Q_1 \subseteq Q_2$ if for any database D, $Q_1(D) \subseteq Q_2(D)$.

How do we express the equivalence of two queries.
The Problem

• Need a description of the relation between the source relations and the global relations. Two main approaches.

• Need to rewrite the user query expressed in the mediated schema into a query expressed in the source schema.

So, given such a query Q, find a query q' that uses only the source relations, such that:

- $Q' \models Q$
- Q' provides all possible answers to Q given the sources
GAV: For each relation \(R \) in the mediated schema, we write a query over the source relations specifying how to obtain \(R \)'s tuples from the sources.

Example: We have two sources DB1 and DB2 containing titles actors and years of movies

\[
\text{MovieActor}(\text{title}, \text{actor}) \leftarrow \\
\text{DB1}(id, \text{title}, \text{actor}, \text{year})
\]

\[
\text{MovieActor}(\text{title}, \text{actor}) \leftarrow \\
\text{DB2}(id, \text{title}, \text{actor}, \text{year})
\]

If we then add a third source DB3 that provides movie reviews, we might add:

\[
\text{MovieReview}(\text{title}, \text{review}) \leftarrow \\
\text{DB1}(id, \text{title}, \text{actor}, \text{year}) \text{ AND } \\
\text{DB3}(id, \text{review})
\]
Find reviews for movies starring Marlon Brando:

\[q(\text{title, review}) :\]
\[\quad \text{MovieActor(title, ‘Brando’) AND} \]
\[\quad \text{MovieActor(title, review)}. \]

Unfolding the descriptions of \text{MovieActor} and \text{MovieReview} will yield the following queries over the source relations:

\[q(\text{title, review}) :\]
\[\quad \text{DB1(id, title, ‘Brando’, year) AND} \]
\[\quad \text{DB3(id, review)} \]

\[q(\text{title, review}) :\]
\[\quad \text{DB1(id, title, ‘Brando’, year) AND} \]
\[\quad \text{DB2(id, title, ‘Brando’, year) AND} \]
\[\quad \text{DB3(id, review)} \]

The second clause is clearly redundant.
Local as View

LAV: The contents of each data source are described as a query over the mediated schema.

Example: Suppose we have two sources: (1) V1 containing the titles, years, and directors of American comedies produced after 1960 and (2) V2 containing movie reviews produced after 1990.

\[\text{V1}(\text{title, year, director}) \rightarrow \]
\[\quad \text{Movie}(\text{title, year, director, genre}) \text{ AND } \]
\[\quad \text{American}(\text{director}) \text{ AND } \]
\[\quad \text{year} \geq 1960 \text{ AND } \text{genre} = '\text{Comedy}'. \]

\[\text{V1}(\text{title, review}) \rightarrow \]
\[\quad \text{Movie}(\text{title, year, director, genre}) \text{ AND } \]
\[\quad \text{year} \geq 1990 \text{ AND } \]
\[\quad \text{MovieReview}(\text{title, review}). \]
Queries

Find reviews of comedies produced after 1950:

\[
q(title, \text{review}) :- \\
\text{Movie}(title, year, \text{director}, 'Comedy') \text{ AND} \\
\text{year} >= 1950 \text{ AND} \\
\text{MovieReview}(title, \text{review}).
\]

Unfolding

\[
q'(title, \text{review}) :- \\
V1(title, year, \text{director}) \text{ AND} \\
V2(title, \text{review})
\]

The reformulated query is not equivalent to original.
Comparison

• **GAV**
 – Query Reformulation is very simple.
 – Adding sources is more difficult.

• **LAV**
 – Adding sources is easy.
 – Query reformulation is difficult.
Systems

- **GAV**
 - TSIMMIS (Stanford)
 - HERMES (University of Maryland)

- **LAV**
 - Information Manifold (AT&T)
 - InfoMaster (Stanford)
 - Tukwila (University of Washington)