Example: Normalization

```
WellRoundedCo ≐
       [AND Company [ALL: Manager
         AND B-SchoolGrad
          [Exists 1 : Technical Degree]]]
HighTechCo ≐
     [AND Company [FILLS : Exchange nasdaq]
      [ALL:ManagerTechie]]
    Techie =
          [EXISTS 2 TechnicalDegree]
     [AND WellRoundedCo HighTechCo]
```

Example: Subsumption

 $[\mathbf{AND}]$ Company

ALL:Manager

[AND B-SchoolGrad

[EXISTS 2 TechnicalDegree]]

[FILLS: Exchange nasdaq]]

[AND LegalEntity

[ALL: Manager B-SchoolGrad]]

 $(Company \sqsubseteq LegalEntity)$

Structure Mapping

$$KB \models (d \sqsubseteq e)$$

IDEA: For d to be subsumed by e, the normalized d must account for each component of the normalized e in some way

Structure Mapping Procedure

Input: Two normalized concepts d and e where d is of the form [AND $d_1 \ldots d_m$] and e is of the form [AND $d_1 \ldots d_m$]

Output yes or no, according to whether $KB \models (d \sqsubseteq e)$

Return yes iff for each component e_j , there exists a component d_i such that d_i matches e_j as follows:

- 1. if e_j is an atomic concept, then either d_i is identical to e_j , or there is a sentence of the form $(d_i \sqsubseteq d')$ in the KB, where recursively some coponent of d' matches e_j ;
- 2. if e_j is of the form [FILLS r c], then d_i must be identical to it;
- 3. if e_j is of the form [EXISTS n r], then the corresponding d_i must be of the form [EXISTS n' r], for some $n' \ge n$; if n = 1, then d_i may be of the form [FILLS r c];
- 4. if e_j is of the form [ALL r e'], then d_i must be of the form [ALL r d'], where recursively d' is subsumed by e'.

Taxonomies and Classification

• Given some query concept q, find all c in KB such that

$$KB \models (c \rightarrow q)$$

• Given some constant c, find all atomic concepts a such that

$$KB \models (c \rightarrow a)$$

Computing Classification

Consider adding a sentence (a = d) to a taxonomy.

1. First calculate S, the most specific subsumers of d

The atomic concepts a such that $KB \models (d \sqsubseteq a)$ but there is no a' distinct from a such that $KB \models (d \sqsubseteq a')$ and $KB \models (a' \sqsubseteq a)$

2. Next calculate G, the most general subsumees of d.

The atomic concepts a such that $KB \models (a \sqsubseteq d)$ but there is no a' distinct from a such that $KB \models (a' \sqsubseteq d)$ and $KB \models (a \sqsubseteq a')$

Computing Classification (cont)

- 3. If there is a concept a' in $S \cap G$, then the concept is already present.
- 4. Otherwise, insert a.
- 5. Handle Constants

Computing (cont)

1. Computing most specific subsumers.

2. Computing the most general subsumees.

Example: Classification

 ${\tt Surgeon} \doteq$

 $[\mathbf{AND}$ Doctor

[FILLS : Specialty surgery]]

Extensions

- $[\mathbf{AT}\text{-}\mathbf{MOST}\ n\ r]$
- [ONE-OF $c_1 \ldots c_n$]
- [SAME-AS $r_1 r_2$]
- Qualified Number Restriction

[EXISTS n r d]

Classification (cont)

- 1. Answering Questions
- 2. Taxonomies and Frame Hierarchies
- 3. Inheritance