Example: Normalization

\[
\text{WellRoundedCo} \equiv \\
[\text{AND } \text{Company } [\text{ALL } : \text{Manager} \\
[\text{AND } \text{B-SchoolGrad} \\
[\text{Exists 1 } : \text{TechnicalDegree}]]]
\]

\[
\text{HighTechCo} \equiv \\
[\text{AND } \text{Company } [\text{FILLS } : \text{Exchange nasdaq} \\
[\text{ALL } : \text{ManagerTechie}]]
\]

\[
\text{Techie} \equiv \\
[\text{EXISTS 2 TechnicalDegree}]
\]

\[
[\text{AND WellRoundedCo HighTechCo}]
\]
Example: Subsumption

\[\text{AND Company} \]
\[\text{ALL :Manager} \]
\[\text{AND B-SchoolGrad} \]
\[\text{EXISTS 2 TechnicalDegree}]\]
\[\text{FILLS :Exchange nasdaq}]\]

\[\text{AND LegalEntity} \]
\[\text{ALL :Manager B-SchoolGrad}]\]

(Company \sqsubseteq \text{LegalEntity})
Structure Mapping

\[KB \models (d \sqsubseteq e) \]

IDEA: For \(d \) to be subsumed by \(e \), the normalized \(d \) must account for each component of the normalized \(e \) in some way.
Structure Mapping Procedure

Input: Two normalized concepts d and e where d is of the form $[\text{AND} \, d_1 \ldots d_m]$ and e is of the form $[\text{AND} \, d_1 \ldots d_m]$

Output yes or no, according to whether $KB \models (d \sqsubseteq e)$

Return yes iff for each component e_j, there exists a component d_i such that d_i matches e_j as follows:

1. if e_j is an atomic concept, then either d_i is identical to e_j, or there is a sentence of the form $(d_i \sqsubseteq d')$ in the KB, where recursively some component of d' matches e_j;

2. if e_j is of the form $[\text{FILLS} \, r \, c]$, then d_i must be identical to it;

3. if e_j is of the form $[\text{EXISTS} \, n \, r]$, then the corresponding d_i must be of the form $[\text{EXISTS} \, n' \, r]$, for some $n' \geq n$; if $n = 1$, then d_i may be of the form $[\text{FILLS} \, r \, c]$;

4. if e_j is of the form $[\text{ALL} \, r \, e']$, then d_i must be of the form $[\text{ALL} \, r \, d']$, where recursively d' is subsumed by e'.
Taxonomies and Classification

• Given some query concept \(q \), find all \(c \) in KB such that

\[
KB \models (c \rightarrow q)
\]

• Given some constant \(c \), find all atomic concepts \(a \) such that

\[
KB \models (c \rightarrow a)
\]
Consider adding a sentence \((a \equiv d)\) to a taxonomy.

1. First calculate \(S\), the most specific subsumers of \(d\)

 The atomic concepts \(a\) such that
 \(KB \models (d \sqsubseteq a)\) but there is no \(a'\) distinct from \(a\) such that
 \(KB \models (d \sqsubseteq a')\) and \(KB \models (a' \sqsubseteq a)\)

2. Next calculate \(G\), the most general subsumees of \(d\).

 The atomic concepts \(a\) such that
 \(KB \models (a \sqsubseteq d)\) but there is no \(a'\) distinct from \(a\) such that
 \(KB \models (a' \sqsubseteq d)\) and \(KB \models (a \sqsubseteq a')\)
3. If there is a concept a' in $S \cap G$, then the concept is already present.

4. Otherwise, insert a.

5. Handle Constants
Computing (cont)

1. Computing most specific subsumers.

2. Computing the most general subsumees.
Example: Classification

Surgeon =

[AND Doctor

[FILLS :Specialty surgery]]
Extensions

- [AT-MOST n r]
- [ONE-OF $c_1 \ldots c_n$]
- [SAME-AS r_1 r_2]
- Qualified Number Restriction

 [EXISTS n r d]
Classification (cont)

1. Answering Questions
2. Taxonomies and Frame Hierarchies
3. Inheritance