Semantics

An interpretation \Im for DL is a pair

$$
\langle\mathcal{D}, \mathcal{I}\rangle
$$

where D is any set of objects called the domain of the interpretation
and
I is a mapping called the interpretation mapping from the non-logical symbols of DL to elements and relations over D.

Semantics (cont)

where

1. for every constant symbol $c, \mathcal{I}[c] \in \mathcal{D}$;
2. for every atomic concept $a, \mathcal{I}[a] \subseteq \mathcal{D}$;
3. for every role symbol $r, \mathcal{I}[c] \subseteq \mathcal{D} \times \mathcal{D}$;

Extending I

- \mathcal{I} [thing $]$
- $\mathcal{I}[\mathbf{A L L} r d]$
- $\mathcal{I}[$ EXISTS $n r]$
- \mathcal{I} [FILLS $r c]$
- $\mathcal{I}\left[\mathbf{A N D} d_{1} \ldots d_{n}\right]$

Truth in an Interpretation

Given an interpretation \Im, we say that α is true in \Im, or $\Im \models \alpha$ according to the following rules. 1. $\Im \models(c \rightarrow d)$ iff $\mathcal{I}[c] \in \mathcal{I}[d]$;
2. $\Im \models\left(d \sqsubseteq d^{\prime}\right)$ iff $\mathcal{I}[d] \subseteq \mathcal{I}\left[d^{\prime}\right]$;
3. $\Im \models\left(d \doteq d^{\prime}\right)$ iff $\mathcal{I}[d]=\mathcal{I}\left[d^{\prime}\right]$;

Assuming that d and d^{\prime} are concepts, and c is a constant.

Entailment

$$
S \models \alpha
$$

iff for every \mathcal{I}
if $\mathcal{I} \models S$
then $\mathcal{I} \models \alpha$

Examples

AND Doctor Female] \sqsubseteq Doctor])
 john \rightarrow Thing)

(Surgeon \sqsubseteq Doctor)
$K B \models[($ AND Doctor Female $] \sqsubseteq$ Doctor $)$
$($ Surgeon $\doteq[$ AND Doctor [FILLS : Specialty surgery $])$

Computing Entailments

We want to be able to determine if $K B \models \alpha$, for sentences α of the form:

$$
\begin{aligned}
& (\mathrm{c} \rightarrow \mathrm{~d}) \\
& (\mathrm{d} \subseteq \mathrm{e})
\end{aligned}
$$

Simplifying the Knowledge Base

- Remove sentences of the form

$$
(c \rightarrow d)
$$

- Left Hand side of \subseteq and \doteq sentences must be atomic concepts other than Thing and each atom appears on the left hand side only once.
- Assume \subseteq and \doteq sentences are acyclic.

Normalization

1. expand definitions:
(Surgeon $\doteq[$ AND Doctor [FILLS : Specialty surgery $]$)
[AND ... Surgeon ...]
expands to
[AND ... [AND Doctor [FILLS : Specialty surgery]] ...]
2. flatten the AND operators:

$$
\left.\mathbf{A N D} \ldots\left[\begin{array}{llll}
\operatorname{AND} & d_{1} & \ldots & d_{n}
\end{array}\right] \ldots\right]
$$

can be simlified to:
AND $\left.\ldots d_{1} \ldots d_{n} \ldots\right]$

Normalization (cont)

3. combine the ALL operators:

$$
\left.\mathbf{A N D} \ldots\left[\mathbf{A L L} r d_{1}\right] \ldots\left[\mathbf{A L L} r d_{2}\right] \ldots\right]
$$

can be simlified to:

$$
\text { AND } \left.\ldots\left[\mathbf{A L L} r\left[\mathbf{A N D} d_{1} d_{2}\right]\right] \ldots\right]
$$

4. combine EXISTS operators:

AND $\left.\ldots\left[\operatorname{EXISTS} n_{1} r\right] \ldots\left[\operatorname{EXISTS} n_{2} r\right] \ldots\right]$
can be simplified to

$$
\text { AND } \ldots[\operatorname{EXISTS} n r] \ldots]
$$

where n is the maximum of n_{1} and n_{2}.

Normalization(cont)
5. deal with Thing:

Remove vacuous concepts as arguments to AND
[ALL r Thing]
6. remove redundant expressions:

The Final Result

$\left[\mathbf{A N D} a_{1} \ldots a_{m}\right.$
$\left[\right.$ FILLS $\left.r_{1} c_{1}\right] \ldots\left[\right.$ FILLS $\left.r_{m^{\prime}} c_{m^{\prime}}\right]$
$\left[\right.$ EXISTS $\left.n_{1} s_{1}\right] \ldots\left[\right.$ EXISTS $\left.n_{m^{\prime \prime}} s_{m^{\prime \prime}}\right]$
$\left[\mathbf{A L L} t_{1} e_{1}\right] \ldots\left[\mathbf{A L L} t_{m^{\prime \prime \prime}} e_{m^{\prime \prime \prime}}\right]$

Structure Mapping

$$
K B \models(d \sqsubseteq e)
$$

IDEA: For d to be subsumed by e, the normalized d must account for each component of the normalized e in some way

Structure Mapping Procedure

Input: Two normalized concepts d and e where d is of the form [AND $d_{1} \ldots d_{m}$] and e is of the form $\left[\right.$ AND $d_{1} \ldots d_{m}$]

Output yes or no, according to whether
$K B \models(d \sqsubseteq e)$
Return yes iff for each component e_{j}, there exists a component d_{i} such that d_{i} matches e_{j} as follows:

1. if e_{j} is an atomic concept, then either d_{i} is identical to e_{j}, or there is a sentence of the form $\left(d_{i} \subseteq d^{\prime}\right)$ in the KB , where recursively some coponent of d^{\prime} matches e_{j};
2. if e_{j} is of the form [FILLS $r c$], then d_{i} must be identical to it;
3. if e_{j} is of the form [EXISTS $n r$], then the corresponding d_{i} must be of the form [EXISTS $n^{\prime} r$], for some $n^{\prime} \geq n$; if $n=1$, then d_{i} may be of the form [FILLS $r c$];
4. if e_{j} is of the form [ALL $\left.r e^{\prime}\right]$, then d_{i} must be of the form [ALL $r d^{\prime}$], where recursively d^{\prime} is subsumed by e^{\prime}.

Computing Satisfaction

$$
\begin{gathered}
K B \models(c \rightarrow e) \\
\text { iff } \\
K B \models(d \subseteq e)
\end{gathered}
$$

where d is the AND of every concept d_{i} such that $\left(c \rightarrow d_{i}\right)$ is in the KB

Taxonomies and Classification

given some query concept, q, find all c in the KB such that

$$
K B \models(c \rightarrow q)
$$

given a constant c, find all the atomic concepts a such that
$K B \models(c \rightarrow a)$

Partial Order, Classification

Computing Classification

Consider adding a sentence $(a \doteq d)$ to a taxonomy.

1. First calculate S, the most specific subsumers of d
2. Next calculate G, the most general subsumees of d.
3. If there is a concept a^{\prime} in $S \cap G$, then the concept is already present.
4. Otherwise, insert a.

Computing (cont)

1. Computing most specific subsumers.

2. Computing the most general subsumees.

Classification (cont)

1. Answering Questions
2. Taxonomies and Frame Hierarchies
3. Inheritance
