Constraint Satisfaction
i Problems

Chapter 5
Section 1 -3

CS 520 - Introduction to
Intelligent Systems 1

q Outline

|
Constraint Satisfaction Problems (CSP)

Backtracking search for CSPs
Local search for CSPs

CS 520 - Introduction to
Intelligent Systems

q Constraint satisfaction problems (CSPs)

Standard search problem:[]

state is a "black box™ — any data structure that supports successor
function, heuristic function, and goal test[]

CSP:[
state is defined by variables X; with values from domain D[]

goal test is a set of constraints specifying allowable combinations of
values for subsets of variables[]

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms[]

CS 520 - Introduction to

Intelligent Systems 3

q Example: Map-Coloring

Northern
Territory

Western
Australia

New South Wales

Tasmania

Variables WA, NT, @ NSW, V, SA, T
Domains D, = {red,green,blue}
Constraints: adjacent regions must have different colors[]

e.g., WA # NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}%EI

CS 520 - Introduction to
Intelligent Systems

q Example: Map-Coloring

Tam"a

Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red,NSW =
green,V = red,SA = blue, T = greenl]

CS 520 - Introduction to
Intelligent Systems 5

q Constraint graph

I
Binary CSP: each constraint relates two variables[]

Constraint graph: nodes are variables, arcs are

constraints]
()
S
O

Q)

CS 520 - Introduction to
Intelligent Systems

q Varieties of CSPs

I
Discrete variables[]
finite domains:
n variables, domain size d 2 O(d") complete assignments
e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
infinite domains:
integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job
need a constraint language, e.q., Startjob, + 5 < Startjob,

Continuous variables[]
e.g., start/end times for Hubble Space Telescope observations
linear constraints solvable in polynomial time by linear programming

CS 520 - Introduction to

Intelligent Systems 7

q Varieties of constraints

I
Unary constraints involve a single variable,
e.g., SA # greenl]

Binary constraints involve pairs of variables,
e.g., SA # WA

Higher-order constraints involve 3 or more

variables,
e.g., cryptarithmetic column constraints[]

CS 520 - Introduction to
Intelligent Systems

q Example: Cryptarithmetic

T WO
+ T WO
FOUR

Variables: FTU W
R O X, X, X;
Domains: {0,1,2,3,4,5,6,7,8, 9}
Constraints: Alldiff (F, T,U,W,R,0)]

O+0=R+10- X,J

X, +W+W=U+10- X;[J

X+ T+T=0+10X;

X,=F, T#0, F# 00

CS 520 - Introduction to
Intelligent Systems 9

q Real-world CSPs

I
Assignment problems
e.g., who teaches what class[]
Timetabling problems[]
e.g., which class is offered when and where?[]
Transportation scheduling(]
Factory scheduling]

Notice that manEreaI—worId problems involve real-
valued variables

CS 520 - Introduction to
Intelligent Systems 10

q Standard search formulation (incremental)

I
Let's start with the straightforward approach, then fix it(]

States are defined by the values assigned so far(]

Initial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that does
not conflict with current assignment

- fail if no legal assignments]
Goal test: the current assignment is complete

This is the same for all CSPs

Every solution appears at depth 7 with n variables
- use depth-first search

Path is irrelevant, so can also use complete-state formulation
b = (n - [)d at depth 4 hence n! - d" leaves[]

CS 520 - Introduction to
Intelligent Systems 11

q Backtracking search

Variable assignments are commutative}, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red][]

Only need to consider assignments to a single variable at each node
- b = d and there are $d”n$ leaves[]

Depth-first search for CSPs with single-variable assignments is called
backtracking search]

Backtracking search is the basic uninformed algorithm for CSPs[]

Can solve r-queens for n= 2501

CS 520 - Introduction to
Intelligent Systems 12

| Backtracking search

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACK TRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var + SELECT-UNASSIGNED- VARIABLE(Variables/csp), assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp] then
add { var = value } to assignment
result ¢+ RECURSIVE-BACK TRACKING(assignrnent, csp)
if result # failue then return resuli
remove { var = value } from assignment
return failure

CS 520 - Introduction to

I Backtracking example

S

CS 520 - Introduction to

I Backtracking example I Backtracking example
I
a8 8
—] —]
L SO Sy SO SO SOy A
A
e o

q Backtracking example

Rp
/1\

¢ ¢ ¢
—
e
— T

°r

CS 520 - Introduction to
Intelligent Systems 17

q Improving backtracking efficiency
|
General-purpose methods can give huge
gains in speed:[]
Which variable should be assigned next?[]
In what order should its values be tried?[]
Can we detect inevitable failure early?[]

CS 520 - Introduction to
Intelligent Systems 18

q Most constrained variable

|
Most constrained variable:
choose the variable with the fewest legal values[]

B s B M

heuristic[]

CS 520 - Introduction to
Intelligent Systems 19

q Most constraining variable

|
Tie-breaker among most constrained
variables

Most constraining variable:]

choose the variable with the most constraints on
remaining variables[]

L

CS 520 - Introduction to
Intelligent Systems 20

q Least constraining value

|
Given a variable, choose the least
constraining value:[]

the one that rules out the fewest values in the

remaining variables[]
‘1!]% Allows 1 value for SA

. Y
ot ol e

Combining these heuristics makes 1000
queens feasible[]

CS 520 - Introduction to
Intelligent Systems 21

q Forward checking

I

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl]

S

WA NT Q NSW v SA T

CS 520 - Introduction to
Intelligent Systems 22

q Forward checking

I

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl]

SIS

WA NT Q NSW v SA T

CS 520 - Introduction to
Intelligent Systems 23

q Forward checking

I

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl]

SR S S~

WA NT Q NSW v SA T
(ErEErEErE [EPEETE R e .|

E[EDN]

I Hjmmwes EEsE]|

CS 520 - Introduction to
Intelligent Systems 24

q Forward checking
I

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl]

S SSEN Sl 5

WA NT Q NSW v SA T

B[R]

[(mmm] m[eE [CE

| B[EEsE]

CS 520 - Introduction to
Intelligent Systems 25

q Constraint propagation
I

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for

all failures: [
SN SN S

wa NT o NSW v sA T
CE I T I ireireriren
FEEVNE|ENE(ESE

C1

. | Ewe mErE]

NT and SA cannot both be blue!d

Constraint propagation repeatedly enforces constraints
locallyd

CS 520 - Introduction to
Intelligent Systems 26

q Arc consistency
I

Simplest form of propagation makes each arc consistent

X - Yis consistent iff]
for every value x of Xthere is some allowed)]

SN S S~

WA NT o NSW v sA T
[| H[owe E[EsE] E[EEE]

CS 520 - Introduction to
Intelligent Systems 27

q Arc consistency
I

Simplest form of propagation makes each arc consistent

X - Yis consistent iff]
for every value x of Xthere is some allowed)]

SIS S~

WA NT [NSW v SA T
— 1 1IN 1 B[E]
CS 520 - Introduction to
Intelligent Systems 28

q Arc consistency

I
Simplest form of propagation makes each arc consistent

X = Yis consistent iff(]
for every value x of Xthere is some allowed y{]

S S S

wa NT a NSW v sa T
1 (1 o a1l E[EEE]

If Xloses a value, neighpors or x need to be rechecked[]

CS 520 - Introduction to
Intelligent Systems 29

q Arc consistency

I
Simplest form of propagation makes each arc consistent

X - Yis consistent iff]
for every value x of Xthere is some allowed)]

SIS S=

wa NT a NSW v sa T
1 (1Ir o a1 p (I}

If Xloses a value, neighbors or X need to be rechecked
Arc consistency detects failure earlier than forward
checking]

Can be run as a preprocessor or after each assignment[]

|:| CS 520 - Introduction to
Intelligent Systems 30

q Arc consistency algorithm AC-3
I

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, Xa, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in esp

while gueue is not empty do
(Xi, Xj) « REMOVE-FIRST(queue)
if RM-INCONSISTENT- VALUES(X;, X;) then
for each X, in NEIGHBORS[X;| do
add (X, X;) to queune

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed +— false
for each rin DoMAIN[X;] do
if no value y in DOMAIN[X;] allows (z,y) to satisfy constraint(X;, X;)
then delete = from DOMAIN[X;]; removed ¢ {rue
return removed

Time complexity: O(n2d3)

CS 520 - Introduction to
Intelligent Systems 31

q Local search for CSPs

Hill-climbing, simulated annealin? typically work with
"complete" states, i.e., all variables assigned[]

To apply to CSPs:[]
allow states with unsatisfied constraints]
operators reassign variable values[]

Variable selection: randomly select any conflicted variable[

Value selection by min-conflicts heuristic: [
choose value that violates the fewest constraints(]
i.e., hill-climb with A(n) = total number of violated constraints[]

CS 520 - Introduction to
Intelligent Systems 32

q Example: 4-Queens
I

States: 4 queens in 4 columns (4% = 256 states)[]
Actions: move queen in column(]

Goal test: no attacks[]

Evaluation: A(n) = number of attacksl]

e I

Given random initial state, can solve rqueens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)

CS 520 - Introduction to
Intelligent Systems 33

W Summary
I

CSPs are a special kind of problem:[]
states defined by values of a fixed set of variables]
goal test defined by constraints on variable values]

Backtracking = depth-first search with one variable assigned per nodel]
Variable ordering and value selection heuristics help significantly]
Forward checking prevents assignments that guarantee later failured

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies[]

Iterative min-conflicts is usually effective in practice]

CS 520 - Introduction to
Intelligent Systems 34

