
CS 520 - Introduction to
Intelligent Systems 1

Constraint Satisfaction
Problems

Chapter 5
Section 1 – 3

CS 520 - Introduction to
Intelligent Systems 2

Outline

Constraint Satisfaction Problems (CSP)
Backtracking search for CSPs
Local search for CSPs

CS 520 - Introduction to
Intelligent Systems 3

Constraint satisfaction problems (CSPs)

Standard search problem:�
state is a "black box“ – any data structure that supports successor
function, heuristic function, and goal test�

CSP:�
state is defined by variables Xi with values from domain Di�
goal test is a set of constraints specifying allowable combinations of
values for subsets of variables�

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms�

CS 520 - Introduction to
Intelligent Systems 4

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T
Domains Di = {red,green,blue}
Constraints: adjacent regions must have different colors�
e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}�

CS 520 - Introduction to
Intelligent Systems 5

Example: Map-Coloring

Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red,NSW =
green,V = red,SA = blue,T = green�

CS 520 - Introduction to
Intelligent Systems 6

Constraint graph

Binary CSP: each constraint relates two variables�
Constraint graph: nodes are variables, arcs are
constraints�

CS 520 - Introduction to
Intelligent Systems 7

Varieties of CSPs

Discrete variables�
finite domains:

n variables, domain size d O(dn) complete assignments
e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

infinite domains:
integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job
need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

Continuous variables�
e.g., start/end times for Hubble Space Telescope observations
linear constraints solvable in polynomial time by linear programming

CS 520 - Introduction to
Intelligent Systems 8

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA ≠ green�

Binary constraints involve pairs of variables,
e.g., SA ≠ WA�

Higher-order constraints involve 3 or more
variables,

e.g., cryptarithmetic column constraints�

CS 520 - Introduction to
Intelligent Systems 9

Example: Cryptarithmetic

Variables: F T U W
R O X1 X2 X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints: Alldiff (F,T,U,W,R,O)�

O + O = R + 10 · X1�
X1 + W + W = U + 10 · X2�
X2 + T + T = O + 10 · X3

X3 = F, T ≠ 0, F ≠ 0�

CS 520 - Introduction to
Intelligent Systems 10

Real-world CSPs

Assignment problems
e.g., who teaches what class�

Timetabling problems�
e.g., which class is offered when and where?�

Transportation scheduling�
Factory scheduling�

Notice that many real-world problems involve real-
valued variables�

CS 520 - Introduction to
Intelligent Systems 11

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it�

States are defined by the values assigned so far�

Initial state: the empty assignment { }
Successor function: assign a value to an unassigned variable that does
not conflict with current assignment

fail if no legal assignments�
Goal test: the current assignment is complete

1. This is the same for all CSPs
2. Every solution appears at depth n with n variables

use depth-first search
3. Path is irrelevant, so can also use complete-state formulation
4. b = (n - l)d at depth l, hence n! · dn leaves�

CS 520 - Introduction to
Intelligent Systems 12

Backtracking search
Variable assignments are commutative}, i.e.,

[WA = red then NT = green] same as [NT = green then WA = red]�

Only need to consider assignments to a single variable at each node
b = d and there are d^n leaves�

Depth-first search for CSPs with single-variable assignments is called
backtracking search�

Backtracking search is the basic uninformed algorithm for CSPs�

Can solve n-queens for n ≈ 25�

CS 520 - Introduction to
Intelligent Systems 13

Backtracking search

CS 520 - Introduction to
Intelligent Systems 14

Backtracking example

CS 520 - Introduction to
Intelligent Systems 15

Backtracking example

CS 520 - Introduction to
Intelligent Systems 16

Backtracking example

CS 520 - Introduction to
Intelligent Systems 17

Backtracking example

CS 520 - Introduction to
Intelligent Systems 18

Improving backtracking efficiency

General-purpose methods can give huge
gains in speed:�

Which variable should be assigned next?�
In what order should its values be tried?�
Can we detect inevitable failure early?�

CS 520 - Introduction to
Intelligent Systems 19

Most constrained variable

Most constrained variable:
choose the variable with the fewest legal values�

a.k.a. minimum remaining values (MRV)
heuristic�

CS 520 - Introduction to
Intelligent Systems 20

Most constraining variable

Tie-breaker among most constrained
variables
Most constraining variable:�

choose the variable with the most constraints on
remaining variables�

CS 520 - Introduction to
Intelligent Systems 21

Least constraining value

Given a variable, choose the least
constraining value:�

the one that rules out the fewest values in the
remaining variables�

Combining these heuristics makes 1000
queens feasible�

CS 520 - Introduction to
Intelligent Systems 22

Forward checking

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values�

CS 520 - Introduction to
Intelligent Systems 23

Forward checking

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values�

CS 520 - Introduction to
Intelligent Systems 24

Forward checking

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values�

CS 520 - Introduction to
Intelligent Systems 25

Forward checking

Idea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values�

CS 520 - Introduction to
Intelligent Systems 26

Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for
all failures:�

NT and SA cannot both be blue!�
Constraint propagation repeatedly enforces constraints
locally�

CS 520 - Introduction to
Intelligent Systems 27

Arc consistency

Simplest form of propagation makes each arc consistent
X Y is consistent iff�
for every value x of X there is some allowed y�

CS 520 - Introduction to
Intelligent Systems 28

Arc consistency

Simplest form of propagation makes each arc consistent
X Y is consistent iff�
for every value x of X there is some allowed y�

CS 520 - Introduction to
Intelligent Systems 29

Arc consistency

Simplest form of propagation makes each arc consistent
X Y is consistent iff�
for every value x of X there is some allowed y�

If X loses a value, neighbors of X need to be rechecked�

CS 520 - Introduction to
Intelligent Systems 30

Arc consistency

Simplest form of propagation makes each arc consistent
X Y is consistent iff�
for every value x of X there is some allowed y�

If X loses a value, neighbors of X need to be rechecked
Arc consistency detects failure earlier than forward
checking�
Can be run as a preprocessor or after each assignment�

�

CS 520 - Introduction to
Intelligent Systems 31

Arc consistency algorithm AC-3

Time complexity: O(n2d3)�

CS 520 - Introduction to
Intelligent Systems 32

Local search for CSPs

Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned�

To apply to CSPs:�
allow states with unsatisfied constraints�
operators reassign variable values�

Variable selection: randomly select any conflicted variable�

Value selection by min-conflicts heuristic:�
choose value that violates the fewest constraints�
i.e., hill-climb with h(n) = total number of violated constraints�

CS 520 - Introduction to
Intelligent Systems 33

Example: 4-Queens

States: 4 queens in 4 columns (44 = 256 states)�
Actions: move queen in column�
Goal test: no attacks�
Evaluation: h(n) = number of attacks�

Given random initial state, can solve n-queens in almost
constant time for arbitrary n with high probability (e.g., n =
10,000,000)�

CS 520 - Introduction to
Intelligent Systems 34

Summary
CSPs are a special kind of problem:�

states defined by values of a fixed set of variables�
goal test defined by constraints on variable values�

Backtracking = depth-first search with one variable assigned per node�

Variable ordering and value selection heuristics help significantly�

Forward checking prevents assignments that guarantee later failure�

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies�

Iterative min-conflicts is usually effective in practice�

