Constraint Satisfaction
Problems

Chapter 5
Section 1 — 3

CS 520 - Introduction to
Intelligent Systems

B Outline

Constraint Satisfaction Problems (CSP)
Backtracking search for CSPs
Local search for CSPs

CS 520 - Introduction to
Intelligent Systems

- Constraint satisfaction problems (CSPs)

Standard search problem:

state is a "black box™ — any data structure that supports successor
function, heuristic function, and goal test[]

CSP:
state is defined by variables X; with values from domain D]

goal test is a set of constraints specifying allowable combinations of
values for subsets of variables[]

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

CS 520 - Introduction to
Intelligent Systems

M Example: Map-Coloring

Northern
Territory

Westarn
Australia

Quesnsland

South —
Australia

New South Wales

;ﬂ\mﬂ

Variables WA, NT, Q, NSW, V, SA, T ="
Domains D, = {red,green,blue}
Constraints: adjacent regions must have different colors[]

e.g., WA # NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}]

CS 520 - Introduction to
Intelligent Systems

M Example: Map-Coloring

=L

T

ghs

Tasm"a

Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red,NSW =
green,V = red,SA = blue, T = green

CS 520 - Introduction to
Intelligent Systems 5

M Constraint graph

Binary CSP: each constraint relates two variables

Constraint graph: nodes are variables, arcs are
constraints

O
O,

CS 520 - Introduction to
Intelligent Systems

B Varieties of CSPs

Discrete variables

finite domains:
n variables, domain size d 2 O(d”) complete assignments
e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
infinite domains:
integers, strings, etc.
e.g., job scheduling, variables are start/end days for each job
need a constraint language, e.g., Startjob, + 5 < Startjob,

Continuous variables
e.g., start/end times for Hubble Space Telescope observations
linear constraints solvable in polynomial time by linear programming

CS 520 - Introduction to
Intelligent Systems 7

M Varieties of constraints

Jnary constraints involve a single variable,
e.g., SA # green

Binary constraints involve pairs of variables,
e.g., SA # WA

Higher-order constraints involve 3 or more

variables,
e.g., cryptarithmetic column constraints

CS 520 - Introduction to
Intelligent Systems

M Example: Cryptarithmetic

T WO EY (T
+ T WO
F O UR

Variables: F T U W H\@/ \®/
R O X, X, X;
Domains: {0,1,2,3,4,5,6,7,8 9}
Constraints: Alldiff (F,T,U,W,R,O)]
O+0=R~+10- X,[]
X, + W+ W=U+ 10- X,[J

X,+T+T7T=0+10- X,
X;=F T#0, F£00

CS 520 - Introduction to
Intelligent Systems

B Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems

e.g., which class is offered when and where?
Transportation scheduling
Factory scheduling

Notice that many real-world problems involve real-

valued variables

CS 520 - Introduction to
Intelligent Systems

10

- Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it[]
States are defined by the values assigned so farll

[nitial state: the empty assignment { }

Successor function: assign a value to an unassigned variable that does
not conflict with current assignment

- fail if no legal assignments[]
Goal test: the current assignment is complete

This is the same for all CSPs

Every solution appears at depth n with n variables
- use depth-first search

Path is irrelevant, so can also use complete-state formulation
b= (n-()datdepth / hence n! - d" leavesl[l]

CS 520 - Introduction to
Intelligent Systems 11

M Backtracking search

Variable assignments are commutative}, i.e.,
[WA = red then NT = green | same as [NT = green then WA = red][]

Only need to consider assignments to a single variable at each node
- b = d and there are $d”~n$ leaves[]

Depth-first search for CSPs with single-variable assignments is called
backtracking searchl

Backtracking search is the basic uninformed algorithm for CSPs[]

Can solve n-queens for n= 2501

CS 520 - Introduction to
Intelligent Systems 12

M Backtracking search

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment,csp) returns a solution, or
failure
if assignment is complete then return assignment
var <+ SELECT- UNASSIGNED- VARIABLE(Variables/csp/, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment according to Constraints[csp| then
add { var = value } to assignment
result <+ RECURSIVE-BACKTRACKING(assignment, csp)
if result +* failue then return result
remove { var = value } from assignment
return failure

CS 520 - Introduction to
Intelligent Systems

13

M Backtracking example

S

CS 520 - Introduction to
Intelligent Systems

14

M Backtracking example

e

m

o 8L

CS 520 - Introduction to
Intelligent Systems

15

M Backtracking example

e

m

o &L
. &

CS 520 - Introduction to
Intelligent Systems

16

M Backtracking example

CS 520 - Introduction to
Intelligent Systems

17

B Improving backtracking efficiency

General-purpose methods can give huge
gains in speed:
Which variable should be assigned next?
In what order should its values be tried?
Can we detect inevitable failure early?

CS 520 - Introduction to
Intelligent Systems 18

B Most constrained variable

Most constrained variable:
choose the variable with the fewest legal values

a-k-IC]- HITHHInrmdinr reinigit iy vaiuco \I'IT\V)

heuristic

CS 520 - Introduction to
Intelligent Systems

19

Ml Most constraining variable

Tie-breaker among most constrained
variables

Most constraining variable:

choose the variable with the most constraints on
remaining variables

L Rt

CS 520 - Introduction to
Intelligent Systems 20

M Least constraining value

Given a variable, choose the least
constraining value:

the one that rules out the fewest values in the
remaining variables

Allows 1 value for SA

™ -

Combining these heuristics makes 1000
queens feasible

CS 520 - Introduction to
Intelligent Systems 21

M Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl[]

Lo

\u.._|L

WA NT Q NSW v SA T
ENfEENFEIETEENFEINEfEINET"EIETDE

CS 520 - Introduction to
Intelligent Systems

M Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl[]

S~

L1

WA NT Q NSW v SA T
ENEENEENEENE|ENE|ENEENE
B "EEFEENEE"E| "EEYE

CS 520 - Introduction to
Intelligent Systems

MW Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl[]

WA NT Q NSW v SA T
ENfEENFEIETEENFEINEfEINET"EIETDE
B "EjENE|EfFEENE|) " EEYEH
] HjOTT N EETE 1L

CS 520 - Introduction to
Intelligent Systems

MW Forward checking

Idea:

Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal valuesl[]

WA NT Q NSW v SA T
ENfEENFEIETEENFEIENEfEINETEIETE
B "EjENE|EfEENE|) EIEYEH
] HiOTT N EIETE 1L
] | QI ____ ENE

CS 520 - Introduction to
Intelligent Systems

MW Constraint propagation

Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for

all failures:
SO St S
BTN EIETNTEETNTEIRTNEIRETEIDETEEIRT D
] CPHECEIECNEIRET R CTHIRET R
I B EErTE HEETR

NT and SA cannot both be blue!
Constraint propagation repeated

locally

CS 520 - Introduction to
Intelligent Systems

y enforces constraints

B Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed {1

WA NT Q NSW v SA T
______ H|iTTT|E EETE HETH

CS 520 - Introduction to
Intelligent Systems

B Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed {1

WA NT Q NSW v SA T
______ E[ae e m HETH

CS 520 - Introduction to
Intelligent Systems

B Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed {1

“h—*‘H:—"H:

WA Q NSW SA T
] 1):]:I:ll EEEEm

If X'loses a value, neignbors or X need to be rechecked

CS 520 - Introduction to
Intelligent Systems

29

B Arc consistency

Simplest form of propagation makes each arc consistent

X = Yis consistent iff
for every value x of Xthere is some allowed {1

“h—*‘H:—"H:

] O |I)I(l) (1

— -

If X'loses a value, neighbors 0T X need to be rechecked

Arc consistency detects failure earlier than forward
checking

Can be run as a preprocessor or after each assignment

CS 520 - Introduction to
Intelligent Systems

30

Bl Arc consistency algorithm AC-3

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, Xs, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, Xj)+ REMOVE-FIRST(queue)
if RM-INCONSISTENT-VALUES(X;, X;) then
for each X; in NEIGHBORS[X;] do
add (X, X;) to queue

function RM-INCONSISTENT-VALUES(X;, X;) returns true iff remove a value
removed <+ false
for each zin DomAIN[X;] do
if no value y in DOMAIN[X;] allows (z,y) to satisfy constraint(X;, X;)
then delete z from DoMAIN[X;]; removed + true
return removed

Time complexity: O(n4d?3)

CS 520 - Introduction to
Intelligent Systems

B Local search for CSPs

H|II cllmblng simulated annealln? typically work with
"complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints]
operators reassign variable valuesl[]

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints]
i.e., hill-climb with /A(n) = total number of violated constraints(]

CS 520 - Introduction to
Intelligent Systems 32

B Example: 4-Queens

States: 4 queens in 4 columns (4* = 256 states)
Actions: move queen in column

Goal test: no attacks

Evaluation: A(n) = number of attacks

E-r

h=>5

Given random initial state, can solve /+queens in almost

¥ |
.
W

h=2

-

|

|
R
H B
*

h=0

constant time for arbitrary n with high probability (e.g., n =

10,000,000)

CS 520 - Introduction to

Intelligent Systems

33

M Summary

CSPs are a special kind of problem:[]
states defined by values of a fixed set of variables[]
goal test defined by constraints on variable values[]

Backtracking = depth-first search with one variable assigned per nodel]
Variable ordering and value selection heuristics help significantly[]
Forward checking prevents assignments that guarantee later failurel

Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistenciesl]

Iterative min-conflicts is usually effective in practicel

CS 520 - Introduction to
Intelligent Systems 34

