Solving problems by searching

Chapter 3

Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms

Problem-solving agents

Example: Romania

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
 static: seq, an action sequence, initially empty
 state, some description of the current world state
 goal, a goal, initially null
 problem, a problem formulation
 state ← UPDATE-STATE(state, percept)
 if seq is empty then do
 goal ← FORMULATE-GOAL(state)
 problem ← FORMULATE-PROBLEM(state, goal)
 seq ← SEARCH(problem)
 action ← FIRST(seq)
 seq ← REST(seq)
 return action

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:
 be in Bucharest
Formulate problem:
 states: various cities
 actions: drive between cities
Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem types

- **Deterministic, fully observable** → **single-state problem**
 - Agent knows exactly which state it will be in; solution is a sequence
- **Non-observable** → **sensorless problem** (conformant problem)
 - Agent may have no idea where it is; solution is a sequence
- **Nondeterministic and/or partially observable** → **contingency problem**
 - Percepts provide new information about current state
 - Often interleave search, execution
- **Unknown state space** → **exploration problem**

Example: vacuum world

- Single-state, start in #5.
 - Solution? [Right, Suck]

- Sensorless, start in {1,2,3,4,5,6,7,8} e.g., Right goes to {2,4,6,8}
 - Solution?
Example: vacuum world

Sensorless, start in
\{1,2,3,4,5,6,7,8\} e.g.,
Right goes to \{2,4,6,8\}
Solution?
[Right, Suck, Left, Suck]

Contingency
- Nondeterministic: Suck may dirty a clean carpet
- Partially observable: location, dirt at current location.
- Percept: [L, Clean], i.e., start in #5 or #7
Solution?

Contingency
- Nondeterministic: Suck may dirty a clean carpet
- Partially observable: location, dirt at current location.
- Percept: [L, Clean], i.e., start in #5 or #7
Solution? [Right, if dirt then Suck]

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function \(S(x) = \) set of action–state pairs
 - e.g., \(S(\text{Arad}) = \{<\text{Arad} \rightarrow \text{Zerind}, \text{Zerind}>, \ldots \} \)
3. goal test, can be
 - explicit, e.g., \(x = \) "at Bucharest"
 - implicit, e.g., \(\text{Checkmate}(x) \)
4. path cost (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - \(c(x,a,y) \) is the step cost, assumed to be \(\geq 0 \)

A solution is a sequence of actions leading from the initial state to a goal state

Selecting a state space

- Real world is absurdly complex
 \(\rightarrow \) state space must be abstracted for problem solving
- (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions
 - e.g., "Arad \(\rightarrow \) Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution =
 - set of real paths that are solutions in the real world
- Each abstract action should be "easier" than the original problem
Vacuum world state space graph

- states?
- actions?
- goal test?
- path cost?

Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?

Example: The 8-puzzle

- states? integer dirt and robot location
- actions? Left, Right, Suck
- goal test? no dirt at all locations
- path cost? 1 per action

Example: The 8-puzzle

- states? locations of tiles
- actions? move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
Example: robotic assembly

- **states?**: real-valued coordinates of robot joint angles parts of the object to be assembled
- **actions?**: continuous motions of robot joints
- **goal test?**: complete assembly
- **path cost?**: time to execute

Tree search algorithms

- **Basic idea**: offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)

```plaintext
function Tree-Search(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
    end loop
end function
```
Implementation: states vs. nodes

- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree includes state, parent node, action, path cost $g(x)$, depth

The `Expand` function creates new nodes, filling in the various fields and using the `SuccessorFn` of the problem to create the corresponding states.

Search strategies

- A search strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
- completeness: does it always find a solution if one exists?
- time complexity: number of nodes generated
- space complexity: maximum number of nodes in memory
- optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
- b: maximum branching factor of the search tree
- d: depth of the least-cost solution
- m: maximum depth of the state space (may be ∞)
Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definition
- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- Implementation:
 - "fringe" is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

- Complete? Yes (if \(b \) is finite)
- Time? \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}) \)
- Space? \(O(b^{d+1}) \) (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)

- Space is the bigger problem (more than time)

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation:
 - "fringe" = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- Complete? Yes, if step cost \(\geq \varepsilon \)
- Time? \# of nodes with \(g \leq \) cost of optimal solution,
 \(O(b^{\text{ceiling}(C*/\varepsilon)}) \) where \(C^* \) is the cost of the optimal solution
- Space? \# of nodes with \(g \leq \) cost of optimal solution,
 \(O(b^{\text{ceiling}(C*/\varepsilon)}) \)
- Optimal? Yes – nodes expanded in increasing order of \(g(n) \)

Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - "fringe" = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe = LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

- **Complete?** No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path
 → complete in finite spaces
- **Time?** \(O(b^m) \): terrible if \(m \) is much larger than \(d \)
 - but if solutions are dense, may be much faster than breadth-first
- **Space?** \(O(bm) \), i.e., linear space!
- **Optimal?** No
Depth-limited search

= depth-first search with depth limit \(l \),
i.e., nodes at depth \(l \) have no successors

- Recursive implementation:

\[
\text{function } \text{DEPTH-LIMITED-SEARCH}(\text{problem, limit}) \ \text{returns} \ \text{soln/fail/cutoff}
\]

\[
\text{RECURSIVE-DLS(Make-Node(Initial-State[problem]), problem, limit)}
\]

\[
\text{function } \text{RECURSIVE-DLS}(\text{node, problem, limit}) \ \text{returns} \ \text{soln/fail/cutoff}
\]

\[
\text{cutoff-occurred?} \leftarrow \text{false}
\]

\[
\text{if GOAL-TEST(STATES[problem]) then return SOLUTION(node)}
\]

\[
\text{else if DEPTH[node] = limit then return cutoff}
\]

\[
\text{else for each successor in EXPAND(\text{node, problem}) do}
\]

\[
\text{result} \leftarrow \text{RECURSIVE-DLS(successor, problem, limit)}
\]

\[
\text{if result = cutoff then cutoff-occurred?} \leftarrow \text{true}
\]

\[
\text{else if result \neq failure then return result}
\]

\[
\text{if cutoff-occurred? then return cutoff else return failure}
\]

Iterative deepening search \(/ = 0 \)

Iterative deepening search \(/ = 1 \)
Iterative deepening search

- Number of nodes generated in a depth-limited search to depth d with branching factor b:
 \[N_{DLS} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d \]

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:
 \[N_{IDS} = (d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + 3b^{d-2} +2b^{d-1} + 1b^d \]

- For $b = 10$, $d = 5$,
 - $N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$

- Overhead = $(123,456 - 111,111) / 111,111 = 11\%$

Properties of iterative deepening search

- Complete? Yes
- Time? $(d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$
- Space? $O(bd)$
- Optimal? Yes, if step cost = 1
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d-1})$</td>
<td>$O(b^{c-1})$</td>
<td>$O(b^w)$</td>
<td>$O(b^l)$</td>
<td>$O(b^p)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d-1})$</td>
<td>$O(b^{c-1})$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Repeated states

- Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

```plaintext
function Graph-Search(problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← Insert(Make-Node(Initial-State[problem]), fringe)

loop do
    if fringe is empty then return failure
    node ← Remove-Front(fringe)
    if Goal-Test(problem)(State[node]) then return Solution(node)
    if State[node] is not in closed then
        add State[node] to closed
        fringe ← InsertAll(Expand(node, problem), fringe)
```

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms