i Solving problems by searching

Chapter 3

CS 520 Introduction to Intelligent
Systems

ﬁ Outline

|
Problem-solving agents

Problem types

Problem formulation
Example problems
Basic search algorithms

CS 520 Introduction to Intelligent
Systems

B Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state < UPDATE-STATE(state, percept)

if seq is empty then do
goal — FORMULATE-GOAL(state)
problem + FORMULATE-PROBLEM(state, goal)
seq < SEARCH(problem)

action +— FIRST(seq)

seq+ REST(seq)

return action

CS 520 Introduction to Intelligent
Systems

* Example: Romania

I
On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest[]
Formulate goal:

be in Bucharest[]

Formulate problem:

states: various cities

actions: drive between cities[]
Find solution:

sequence of cities, e.g., Arad, Sibiu, Fagaras,
Bucharest[]

CS 520 Introduction to Intelligent
Systems

j Example: Romania

Craiova

~ Systems

! Problem types

Deterministic, fully observable = single-state problem

Agent knows exactly which state it will be in; solution is a
sequencel

= Non-observable = sensorless problem (conformant
problem)
Agent may have no idea where it is; solution is a sequencel]
= Nondeterministic and/or partially observable - contingency
problem
percepts provide new information about current state
often interleave} search, execution]

= Unknown state space - exploration problem

CS 520 Introduction to Intelligent
Systems 6

! Example: vacuum world

= Single-state, start in #5.

1
Solution?[] f o
3 | =)
B
5 | =)
og
7 |=d)

CS 520 Introduction to Intelligent
Systems

= Single-state, start in #5.

S SRS

: ; 1 2
Solution? /Right, Suck] ﬁ s o f
= Sensorless, start in 3 | =) 4 =
{1,2,34,56,7,8 e.g., = =
Right goes to {2,4,6,8} 5 [0 6 -
Solution?[] o2t o2t
7 | =) 8 =)

Example: vacuum world

CS 520 Introduction to Intelligent
Systems 8

q Example: vacuum world
I

Sensorless, start in

{1,234567,8 eq., B Pl R L B P
Right goes to {2,4,6,8)
Solution? 3 | = 4 =
. L -
[Right, Suck, Left SuckjL]
5 | =) 6 =)
. 7R
Contingency o
Nondeterministic: Suck may 7 | =) 8 =)
dirty a clean carpet
Partially observable: location, dirt at current location.
Percept: /L, Clean], i.e., start in #5 or #7
Solution?
CS 520 Introduction to Intelligent
Systems 9

q Example: vacuum world
I

Sensorless, start in

1 2
{1,234567,8 eg., - - |22
Right goes to {2,4,6,8}
Solution? 3 | =) 4 =)
[Right, Suck, Left SuckjL] = =
5 | =] 6 =]
Contingency s o
Nondeterministic: Suck may 7 | =) 8 =)
dirty a clean carpet

Partially observable: location, dirt at current location.
Percept: /L, Clean], i.e., start in #5 or #7
Solution? /Right, if dirt then Suck]

CS 520 Introduction to Intelligent
Systems

10

q Single-state problem formulation
I

A problem is defined by four items:[]

initial state e.g., "at Arad"J

actions or successor function S(x) = set of action—state pairs
e.g., S(Arad) ={<Arad > Zerind, Zerind>, ... }(1

goal test, can be
explicit, e.g., x = "at Bucharest"
implicit, e.g., Checkmate(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y)is the step cost, assumed to be = 0[]

A solution is a sequence of actions leading from the initial state to a
goal statel[]

CS 520 Introduction to Intelligent
Systems 11

q Selecting a state space

I

Real world is absurdly complex

- state space must be abstracted for problem solving[l
(Abstract) state = set of real states[]

(Abstract) action = complex combination of real actions

e.g., "Arad - Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad" must
get to some real state "in Zerind"[J
(Abstract) solution =

set of real paths that are solutions in the real world[

Each abstract action should be "easier" than the original
problem[]

CS 520 Introduction to Intelligent
Systems

12

! Vacuum world state space graph

(s [s [0
O LT B &L e 20
& : s O
LT
= states: ~ &
= actions?
= goal test?

path cost?[]

CS 520 Introduction to Intelligent
Systems 13

! Vacuum world state space graph

LCﬁ oo oo

=)
e

TED (LD
=)

C

Eﬂ#
]
(A1
@Rt

states? integer dirt and robot location
actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action

CS 520 Introduction to Intelligent
Systems 14

! Example: The 8-puzzle

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

= states?

= actions?

= goal test?

= path cost?

CS 520 Introduction to Intelligent
Systems 15

! Example: The 8-puzzle

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

= states? locations of tiles

= actions? move blank left, right, up, down
= goal test? = goal state (given)

= path cost? 1 per movel]

[Note: optimal solution of 7Puzzle family is NP-hard][]

CS 520 Introduction to Intelligent
Systems 16

M Example: robotic assembly
I

states?: real-valued coordinates of robot joint
angles parts of the object to be assembled

actions?: continuous motions of robot joints[]
goal test?: complete assembly[]
path cost?: time to executel

CS 520 Introduction to Intelligent

q Tree search algorithms

|
Basic idea:
offline, simulated exploration of state space by

generating successors of already-explored states
(a.k.a.~expanding states)[]

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

CS 520 Introduction to Intelligent

q Tree search example ﬁ Tree search example
| | CAmd

Systems 19

B Tree search example
I

T

> s> (e i

CS 520 Introduction to Intelligent
Systems 21

* Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GoAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe « INSERT ALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors <+ the empty set

for each action, result in SUCCESSOR-FN|[problem](STATE[node]) do
$4—a new NODE
PARENT-NODE[s] + node; ACTION[s] +— action; STATE[s] < result
Parn-CosT1[s] + PaTH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] + DEPTH[node] + 1
add s to successors

return successors

- Systems 22

q Implementation: states vs. nodes
I

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

parent, action

State E E Node depth - 6

=6
a2 ’
BB

The Expand function creates new nodes, filling in the
various fields and using the successorFn of the problem
to create the corresponding states.[]

CS 520 Introduction to Intelligent
Systems 23

ﬁ Search strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?]
Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be «)[]

CS 520 Introduction to Intelligent
Systems 24

q Uninformed search strategies

|

Uninformed search strategies use only the
information available in the problem
definition[]

Breadth-first search]
Uniform-cost search]
Depth-first search]
Depth-limited search[]
Iterative deepening searchl]

CS 520 Introduction to Intelligent
Systems 25

q Breadth-first search

|
Expand shallowest unexpanded nodell

Implementation:
fringe is a FIFO queue, i.e., hew successors go

at endd
>@

Systems 26

q Breadth-first search

|
Expand shallowest unexpanded nodel]

Implementation:

fringe is a FIFO queue, i.e., hew successors go
at end

40 (©

Systems 27

q Breadth-first search

|
Expand shallowest unexpanded nodell

Implementation:

fringe is a FIFO queue, i.e., hew successors go
at end

(E) P> (S
o ¢

Systems 28

q Breadth-first search

|
Expand shallowest unexpanded nodel]

Implementation:

fringe is a FIFO queue, i.e., hew successors go
at end(]

(E) ()
pbO@O ©®© © @

Systems

29

q Properties of breadth-first search

|

Complete? Yes (if bis finite)]

Time? 1+b+bH2+b3+... + b7 + b(b?-1) = O(bd+1) [
Space? O(b?*1) (keeps every node in memory)[]
Optimal? Yes (if cost = 1 per step)[]

Space is the bigger problem (more than time)[l

CS 520 Introduction to Intelligent
Systems 30

q Uniform-cost search

|
Expand least-cost unexpanded nodel]

Implementation:
fringe = queue ordered by path cost[]

Equivalent to breadth-first if step costs all equall]
Complete? Yes, if step cost = €[]

Time? # of nodes with g < cost of optimal solution,
O(breing(©7e)) where C is the cost of the optimal solution

Space? # of nodes with g < cost of optimal solution,
O(bce/'//hg(C¥e))|:|

Optimal? Yes — nodes expanded in increasing order of
g(n)tl

CS 520 Introduction to Intelligent
Systems

31

q Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

20

CS 520 Introduction to Intelligent
Systems 32

M Depth-first search
I

Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems 33

ﬁ Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems 34

q Depth-first search
I

Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems 35

* Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems 36

q Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems

37

q Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems 38

q Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems

39

q Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems 40

q Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

C)
20 L5)

CS 520 Introduction to Intelligent
Systems

41

q Depth-first search

I
Expand deepest unexpanded nodell
Implementation:

fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems 4

q Depth-first search

|
Expand deepest unexpanded nodell

Implementation:
fringe = LIFO queue, i.e., put successors at front[]

CS 520 Introduction to Intelligent
Systems

43

q Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces
with loops

Modify to avoid repeated states along path[
- complete in finite spaces[]

Time? O(b™). terrible if mis much larger than d

but if solutions are dense, may be much faster than
breadth-first[]

Space? O(bm), i.e., linear space![]
Optimal? Nol[l

CS 520 Introduction to Intelligent
Systems 44

! Depth-limited search

= depth-first search with depth limit /
i.e., nodes at depth /have no successorsl]

= Recursive implementation:

function DEPTH- LIMITED- SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-D LS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RecURsIvE-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? + false
if GoAL-TEST[problem](STATE[node]) then return SOLUTION(node)
else if DEPTH([node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? « true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

CS 520 Introduction to Intelligent

Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depih+ 0 to co do
result < DEPTH-LIMITED-SEARCH(problem, depth)
if resull # cutoff then return result

CS 520 Introduction to Intelligent

Iterative deepening search /=0 Iterative deepening search /=1

q Iterative deepening search /=2

|
S S P S

CS 520 Introduction to Intelligent
Systems

49

ﬁ Iterative deepening search /=3

%%3

Limit=3 @ @
@ @
(5] © (5 ©
@ ©® v
+(D)
&)
B (5
+(E)

CS 520 Introduction to Intelligent
Systems

50

q Iterative deepening search

Number of nodes generated in a depth-limited search to
depth ¢ with branching factor &

Npys=0 +b +6 +..

.+ b+ b+

Number of nodes generated in an iterative deepening
search to depth dwith branching factor &:

Npps = (d+1)b° + d bAL + (d-1)bA2 + ...

For b =10, d = 50
Nps=1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111[]
Npps = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,45601

Overhead = (123,456 - 111,111)/111,111 = 11%

CS 520 Introduction to Intelligent
Systems

+ 3bd2 +2bd-1 + 1pd

51

FIOpPCILUCS Ul IlEidlve

q deepening search

|
Complete? Yesl

Time? (d+1)° + d b + (d-1)E° + ...
o(b°)

Space? O(bd)]

Optimal? Yes, if step cost = 1

CS 520 Introduction to Intelligent
Systems

+ b7

52

M Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oYy oplcy o@mm) o) O(b?)
Space oYy o®lC)y Obm) o(bl) o(bd)
Optimal? Yes Yes No No Yes

CS 520 Introduction to Intelligent

q Repeated states

Failure to detect repeated states can turn a
linear problem into an exponential one![]

CS 520 Introduction to Intelligent

Systems 53 Systems 54
I
Problem formulation usually requires abstracting away real-
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure world details to define a state space that can feasibly be
closed+— an empty set explored O
fringe + INSERT(MAKE-NODE(INITIAL- STATE([problem)), fringe)
loop do . . .
if fringe is empty then return failure Variety of uninformed search strategiesl]
node +— REMOVE-FRONT(fringe)
if GoAL-TEsT[problem](STATE[node]) then return SOLUTION(node) Iterative deepening search uses 0n|y linear space and not
if STATE[nodé] is not in closed then . . .
2dd StaTE[node] to closed much more time than other uninformed algorithms[]
fringe « INSERTALL(EXPAND(node, problem), fringe)
CS 520 Introduction to Intelligent CS 520 Introduction to Intelligent
Systems 55 Systems 56

