Solving problems by searching

Chapter 3
Outline

- Problem-solving agents
- Problem types
- Problem formulation
- Example problems
- Basic search algorithms
Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

static: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state ← UPDATE-STATE(state, percept)
if seq is empty then do

goal ← FORMULATE-GOAL(state)

problem ← FORMULATE-PROBLEM(state, goal)

seq ← SEARCH(problem)

action ← FIRST(seq)

seq ← REST(seq)

return action

CS 520 Introduction to Intelligent Systems
Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- **Formulate goal:**
 - be in Bucharest
- **Formulate problem:**
 - **states:** various cities
 - **actions:** drive between cities
- **Find solution:**
 - sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Example: Romania
Problem types

- Deterministic, fully observable → single-state problem
 - Agent knows exactly which state it will be in; solution is a sequence
- Non-observable → sensorless problem (conformant problem)
 - Agent may have no idea where it is; solution is a sequence
- Nondeterministic and/or partially observable → contingency problem
 - percepts provide new information about current state
 - often interleave} search, execution
- Unknown state space → exploration problem
Example: vacuum world

- Single-state, start in #5.

Solution?
Example: vacuum world

- Single-state, start in #5. Solution? \([Right, Suck]\)

- Sensorless, start in \(\{1,2,3,4,5,6,7,8\}\) e.g., \(Right\) goes to \(\{2,4,6,8\}\). Solution?
Example: vacuum world

- **Sensorless**, start in \{1,2,3,4,5,6,7,8\} e.g., Right goes to \{2,4,6,8\}
 - Solution?
 - \([\text{Right}, \text{Suck}, \text{Left}, \text{Suck}]\)

- **Contingency**
 - Nondeterministic: \textit{Suck} may dirty a clean carpet
 - Partially observable: location, dirt at current location.
 - Percept: \([L, \text{Clean}]\), i.e., start in #5 or #7
 - Solution?
Example: vacuum world

- **Sensorless**, start in \{1,2,3,4,5,6,7,8\} e.g., *Right* goes to \{2,4,6,8\}
 - **Solution?**
 - \[\text{Right, Suck, Left, Suck}\]

- **Contingency**
 - Nondeterministic: *Suck* may dirty a clean carpet
 - Partially observable: location, dirt at current location.
 - Percept: \([L, \text{Clean}], \text{i.e., start in } \#5 \text{ or } \#7\)
 - **Solution?** \([\text{Right, if dirt then Suck}]\)
A problem is defined by four items:

1. initial state e.g., "at Arad"
2. actions or successor function $S(x) =$ set of action–state pairs
 - e.g., $S(Arad) = \{ <Arad \rightarrow Zerind, Zerind>, \ldots \}$
3. goal test, can be
 - explicit, e.g., $x =$ "at Bucharest"
 - implicit, e.g., $Checkmate(x)$
4. path cost (additive)
 - e.g., sum of distances, number of actions executed, etc.
 - $c(x,a,y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state
Selecting a state space

- Real world is absurdly complex
 → state space must be abstracted for problem solving
- (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions
 - e.g., "Arad → Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
- (Abstract) solution =
 - set of real paths that are solutions in the real world
- Each abstract action should be "easier" than the original problem
Vacuum world state space graph

- states?
- actions?
- goal test?
- path cost?
Vacuum world state space graph

- **states?** integer dirt and robot location
- **actions?** *Left, Right, Suck*
- **goal test?** no dirt at all locations
- **path cost?** 1 per action
Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?
Example: The 8-puzzle

- **states?** locations of tiles
- **actions?** move blank left, right, up, down
- **goal test?** = goal state (given)
- **path cost?** 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
Example: robotic assembly

- **states?**: real-valued coordinates of robot joint angles parts of the object to be assembled
- **actions?**: continuous motions of robot joints
- **goal test?**: complete assembly
- **path cost?**: time to execute
Tree search algorithms

Basic idea:

- offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree

Tree search example
Tree search example
Tree search example
Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)
 end loop

function EXPAND(node, problem) returns a set of nodes
 successors ← the empty set
 for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
 s ← a new NODE
 PARENT-NODE[s] ← node; ACTION[s] ← action; STATE[s] ← result
 PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
 DEPTH[s] ← DEPTH[node] + 1
 add s to successors
 end for
 return successors
Implementation: states vs. nodes

- A **state** is a (representation of) a physical configuration.
- A **node** is a data structure constituting part of a search tree. It includes state, parent node, action, path cost $g(x)$, depth.

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.
Search strategies

- A search strategy is defined by picking the order of node expansion.
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - m: maximum depth of the state space (may be ∞)
Uninformed search strategies

Uninformed search strategies use only the information available in the problem definition.

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search
Breadth-first search

- Expand shallowest unexpanded node

Implementation:

- *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- **Implementation:**
 - *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node

Implementation:

- *fringe* is a FIFO queue, i.e., new successors go at end
Breadth-first search

- Expand shallowest unexpanded node
- **Implementation:**
 - *fringe* is a FIFO queue, i.e., new successors go at end

```
       A
      / \  
     B   C
    / \  /  
   D  E F  G
```
Properties of breadth-first search

- **Complete?** Yes (if b is finite)
- **Time?** $1+b+b^2+b^3+\ldots +b^d + b(b^d-1) = O(b^{d+1})$
- **Space?** $O(b^{d+1})$ (keeps every node in memory)
- **Optimal?** Yes (if cost = 1 per step)

- Space is the bigger problem (more than time)
Uniform-cost search

- Expand least-cost unexpanded node
- Implementation:
 - fringe = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- Complete? Yes, if step cost \(\geq \varepsilon \)
- Time? # of nodes with \(g \leq \) cost of optimal solution, \(O(b^{\lceil C*/\varepsilon \rceil}) \) where \(C^* \) is the cost of the optimal solution
- Space? # of nodes with \(g \leq \) cost of optimal solution, \(O(b^{\lceil C*/\varepsilon \rceil}) \)
- Optimal? Yes – nodes expanded in increasing order of \(g(n) \)
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - \textit{fringe} = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- Implementation:
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - *fringe* = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - fringe = LIFO queue, i.e., put successors at front
Depth-first search

- Expand deepest unexpanded node
- **Implementation:**
 - `fringe` = LIFO queue, i.e., put successors at front
Properties of depth-first search

- **Complete?** No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path
 → complete in finite spaces
- **Time?** $O(b^m)$: terrible if m is much larger than d
 - but if solutions are dense, may be much faster than breadth-first
- **Space?** $O(bm)$, i.e., linear space!
- **Optimal?** No
Depth-limited search

= depth-first search with depth limit \(/
\)
i.e., nodes at depth \(/
\) have no successors

- Recursive implementation:

```plaintext
function Depth-Limited-Search\( \text{problem, limit} \) returns soln/fail/cutoff
Recursive-DLS\( \text{MAKE-NODE}([\text{INITIAL-STATE}[\text{problem}]], \text{problem, limit}) \)

function Recursive-DLS\( \text{node, problem, limit} \) returns soln/fail/cutoff
cutoff-occurred? \(\leftarrow\) false
if GOAL-TEST\( \text{problem}([\text{STATE}[\text{node}]) \) then return SOLUTION\( \text{node} \)
else if DEPTH\( \text{node} = \text{limit} \) then return cutoff
else for each successor in EXPAND\( \text{node, problem} \) do
  result \(\leftarrow\) Recursive-DLS\( \text{successor, problem, limit} \)
  if result = cutoff then cutoff-occurred? \(\leftarrow\) true
  else if result \(\neq\) failure then return result
if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

function iterative-deepening-search(problem) returns a solution, or failure

 inputs: problem, a problem

 for depth ← 0 to ∞ do
 result ← depth-limited-search(problem, depth)
 if result ≠ cutoff then return result
Iterative deepening search / = 0

Limit = 0
Iterative deepening search /

\[\text{Limit} = 1 \]
Iterative deepening search \(\ell = 2 \)
Iterative deepening search \(l = 3 \)
Iterative deepening search

- Number of nodes generated in a depth-limited search to depth d with branching factor b:
 \[N_{\text{DLS}} = b^0 + b^1 + b^2 + \ldots + b^{d-2} + b^{d-1} + b^d \]

- Number of nodes generated in an iterative deepening search to depth d with branching factor b:
 \[N_{\text{IDS}} = (d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + 3b^{d-2} + 2b^{d-1} + 1b^d \]

- For $b = 10$, $d = 5$,
 - $N_{\text{DLS}} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
 - $N_{\text{IDS}} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$

- Overhead = \(\frac{123,456 - 111,111}{111,111} = 11\%\)
Properties of iterative deepening search

- **Complete?** Yes
- **Time?** \((d+1)b^0 + d b^1 + (d-1)b^2 + \ldots + b^d = \mathcal{O}(b^d)\)
- **Space?** \(\mathcal{O}(bd)\)
- **Optimal?** Yes, if step cost = 1
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{C^*}/\epsilon)$</td>
<td>$O(b^m)$</td>
<td>$O(b^l)$</td>
<td>$O(b^d)$</td>
</tr>
<tr>
<td>Space</td>
<td>$O(b^{d+1})$</td>
<td>$O(b^{C^*}/\epsilon)$</td>
<td>$O(bm)$</td>
<td>$O(bl)$</td>
<td>$O(bd)$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Repeated states

- Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERTALL(EXPAND(node, problem), fringe)
Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

- Variety of uninformed search strategies

- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms