CS520

Informed search algorithms

Chapter 4

Outline

» Best-first search

* Greedy best-first search

« A’ search

* Heuristics

* Local search algorithms

* Hill-climbing search

» Simulated annealing search
* Local beam search

* Genetic algorithms

CS520

* \input{\file{algorithms}{tree-search-short-

Review: Tree search

algorithm}}[]

A search strategy is defined by picking the

order of node expansion]

CS520

Best-first search

+ lIdea: use an evaluation function f(n) for each node
— estimate of "desirability"[]
- Expand most desirable unexpanded nodel

* |Implementation:

Order the nodes in fringe in decreasing order of
desirability[

* Special cases:
— greedy best-first search
— A’ search(]

CS520

Romania with step costs in km Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)

Straight—line distance
‘© Buchamest

— 2 = estimate of cost from n to goall’]
Dobreta 4

=
g
2
E
-
g

.

Fagaras e.g., hg, p(n) = straight-line distance from n
Hoa L to Bucharest(|

Neami. b Greedy best-first search expands the node
Mesti 10 that appears to be closest to goalll

2
:;i
[]

Greedy best-first search Greedy best-first search
example example

CS520 7 CS520 8

Greeady best-1irst searcn
example

hmd >
s
7 3 z
i T
T \\ T
66 178 380 193

CS520

CS520

Greedy best-Tirst search
example

10

Properties of greedy best-first

search

« Complete? No — can get stuck in loops,
e.g., lasi > Neamt - lasi > Neamt > [

- Time? O(b™), but a good heuristic can give

dramatic improvement(]

« Space? O(b™) -- keeps all nodes in
memory[]

» Optimal? Nol[J

CS520

1

CS520

A’ search

|ldea: avoid expanding paths that are
already expensivel]

Evaluation function f(n) = g(n) + h(n)[]
g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through
n to goall]

12

A" search example

366=0+366

CS520 13

A" search example

mmmmmm
393=140+253 #7=118+329 +49=75+374

CS520 14

A" search example

CAmd
BB > Tmisoars
S 447=118+320 449=75.a74
Cradez) D4

648=2804366 +15=23%+176 671=221+380 413=220+183

CS520 15

A" search example

< B> Tmisoais
e 447=118+320 449=75.a74

B
646-280+4366 415=23%+176 671=291+380

o> > o>

525=366+160 417=317+100 553=300+253

CS520 16

A" search example

CAmd
=
> (Tiwisoas
= #7=118+329 448=751a74
> ’ @ @
648-200+368 - . 671-201+380
501-338+253 450485040 526366+ 160 417=-117+1uu 553-300+253
CS520 17

A" search example

(j s'h'm 3 Trison
= #7=118:329 448=751a74

awim-ﬂaa \‘ 571 2914350
- @

531=338+253 450=45040 526=366+180 | . 5533004253

@
418=41840 G15=455+160 GO7=414+193

CS520 18

Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h’(n), where h’(n) is the true cost to reach
the goal state from n.[]

An admissible heuristic never overestimates the
cost to reach the goal, i.e., it is optimisticl]
Example: hg, p(n) (never overestimates the
actual road distance)(]

Theorem: If h(n) is admissible, A" using TREE-
SEARCH is optimall’

CS520 19

Optimality of A" (proof)

» Suppose some suboptimal goal G, has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that nis on a
shortest path to an optimal goal G.[J

Start

c@ @G
« f(G,) =9(G,) since h(G,) =0
+ 9(Gy) >9g(G) since G, is suboptimal
+ f(G) =9g(G) since h(G) =0
+ f(G,) >f(G) from above

CS520 20

Optimality of A" (proof)

* Suppose some suboptimal goal G, has been generated and is in the
fringe. Let n be an unexpanded node in the fringe such that nis on a
shortest path to an optimal goal G.[1

Start

N

n
i@ @G

« f(G,) > f(G) from above

* h(n) < h™(n) since h is admissible

* g(n)+h(n) =g(n)+h(n)

o f(n) <f(G)U

Hence f(G,) > f(n), and A" will never select G, for expansion(]

CS520 21

Consistent heuristics

* A heuristic is consistent if for every node n, every successor n'of n
generated by any action a, [J

h(n) < c(n,a,n’) + h(n')[]

+ If his consistent, we have(]
f(n) =g(n’) +h(n')
=g(n) + ¢(n,a,n’) + h(n')
2 g(n) +h(n)
=f(n)0)
* i.e., f(n) is non-decreasing along any path.[]
Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimall

CS520 22

Optimality of A"
* A’ expands nodes in order of increasing f valuel

* Gradually adds "f-contours" of nodes
« Contour j has all nodes with f=f, where f, < f,,,[J
oo

CS520 23

Properties of AS"*$

Complete? Yes (unless there are infinitely
many nodes with f < f(G))[J

Time? Exponential
Space? Keeps all nodes in memory!(|
Optimal? Yesl]

CS520 24

Admissible heuristics

E.g., for the 8-puzzle:[

* h,(n) = number of misplaced tiles

* hy(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)[]

Haa

sl (el
el e

HBaB
=]

Admissible heuristics

E.g., for the 8-puzzle:[]

* hy(n) = number of misplaced tiles

* hy(n) = total Manhattan distance

(i.e., no. of squares from desired location of each tile)[]

Haa
sl (el
sl e

HBaB
=]

° hl(S) - ’) Start State Goal State ° hl(S) — f) 8 Start State Goal State

- h(S)=210 © hy(S) =7 3+1+2+2+2+3+3+2 = 18

CS520 25 CS520 26
Dominance Relaxed problems

* If hy(n) 2 h,(n) for all n (both admissible)
+ then h, dominates h,
* h,is better for search(’

» Typical search costs (average number of nodes
expanded):[]

. d=12 IDS = 3,644,035 nodes

A’(h,) = 227 nodes

A’(h,) = 73 nodes

» d=24 IDS = too many nodes
A’(h,) = 39,135 nodes

A’(h,) = 1,641 nodes [

CS520

27

A problem with fewer restrictions on the actions
is called a relaxed problem(]

The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the
original problem(]

If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h,(n) gives the
shortest solution(’]

If the rules are relaxed so that a tile can move to
any adjacent square, then h,(n) gives the
shortest solution(]

CS520 28

Local search algorithms

* In many optimization problems, the path to the
goal is irrelevant; the goal state itself is the
solution

» State space = set of "complete" configurations

» Find configuration satisfying constraints, e.g., n-
queens

* In suph cases, we can use local search
algorithms

* keep a single "current” state, try to improve it

CS520 29

Example: n-queens

* Put n queens on an n x n board with no
two queens on the same row, column, or
diagonall]

ahei= b Lad

CS520 30

Hill-climbing search

 "Like climbing Everest in thick fog with
amnesia"[]

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current+— MAKE-NODE(INITIAL-STATE[problem])

loop do
netghbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[currend]
current «— neighbor

CS520 31

Hill-climbing search

* Problem: depending on initial state, can
get stuck in local maximal]

objective function
3

lobal maximmm
F._H__,.-rE

shoulder

local maximmm

"flat" local maxirmim

=-ctate space
CS52C b 32

Hill-climbing search: 8-queens problem

h = number of pairs of queens that are attacking each other, either directly
or indirectly
h = 17 for the above state(]

CS520 33

Hill-climbing search: 8-queens problem

* A local minimum with h = 1(]

CS520 34

Simulated annealing search

 |dea: escape local maxima by allowing some
"bad" moves but gradually decrease their
frequency

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
neat, a node
T, a “temperature” controlling prob. of downward steps

current +— MAKE-NODE(INITIAL-STATE[problem])
for t« 1to oo do
T+ schedulell]
if 7= 0 then return current
next+— a randomly selected successor of current
AE+< VALUE[nezt] - VALUE[current]
if AE > 0 then current + next

else current « next only with probability e® £/
CS520 35

Properties of simulated
annealing search

* One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching 117

» Widely used in VLSI layout, airline scheduling,
etcl

CS520 36

Local beam search

» Keep track of k states rather than just onel
+ Start with k randomly generated states(’

» At each iteration, all the successors of all k
states are generated!]

» If any one is a goal state, stop; else select the k
best successors from the complete list and
repeat.’]

CS520 37

Genetic algorithms

* A successor state is generated by combining two parent
states!

+ Start with k randomly generated states (population)’

» A state is represented as a string over a finite alphabet
(often a string of Os and 1s)]

» Evaluation function (fithess function). Higher values for
better states.[

* Produce the next generation of states by selection,
crossover, and mutation(

CS520 38

Genetic algorithms

24 1% [32752411 [32748552 | =] 3274462 |
23 20% ™~ 24748552 >_<|24?52411}—-|24?52411|
20 269~ 32752411 [32752124 || 328k 2124]
1 14% |24415§124 | 24415811] 24415410

[a] ikl i<l i =1
Initial Population Fitness Function Selection Cross—Over Mutation

 Fitness function: number of non-attacking pairs of
queens (min =0, max =8 x 7/2 = 28)[]

» 24/(24+23+20+11) = 31%/[]

» 23/(24+23+20+11) = 29% etc!(]

CS520 39

Genetic algorithms

CS520 40

