Informed search algorithms

Chapter 4

Outline

• Best-first search
• Greedy best-first search
• A* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms

Review: Tree search

• \input{algorithms}{tree-search-short-algorithm})
• A search strategy is defined by picking the order of node expansion

Best-first search

• Idea: use an evaluation function $f(n)$ for each node
 – estimate of "desirability"
 \Rightarrow Expand most desirable unexpanded node

• Implementation:
 Order the nodes in fringe in decreasing order of desirability

• Special cases:
 – greedy best-first search
 – A* search
Romania with step costs in km

Greedy best-first search

- Evaluation function \(f(n) = h(n) \) (heuristic)
- = estimate of cost from \(n \) to goal
- e.g., \(h_{SLD}(n) \) = straight-line distance from \(n \) to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal
Greedy best-first search example

Properties of greedy best-first search

- **Complete?** No – can get stuck in loops, e.g., Iasi \(\rightarrow \) Neamt \(\rightarrow \) Iasi \(\rightarrow \) Neamt \(\rightarrow \)
- **Time?** \(O(b^m) \), but a good heuristic can give dramatic improvement
- **Space?** \(O(b^m) \) -- keeps all nodes in memory
- **Optimal?** No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function \(f(n) = g(n) + h(n) \)
- \(g(n) = \) cost so far to reach \(n \)
- \(h(n) = \) estimated cost from \(n \) to goal
- \(f(n) = \) estimated total cost of path through \(n \) to goal
Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic.
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- **Theorem:** If $h(n)$ is admissible, A* using *TREE-SEARCH* is optimal

Optimality of A* (proof)

- Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.
- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- $f(G) = g(G)$ since $h(G) = 0$
- $f(G_2) > f(G)$ from above
Optimality of A* (proof)

• Suppose some suboptimal goal \(G_2 \) has been generated and is in the fringe. Let \(n \) be an unexpanded node in the fringe such that \(n \) is on a shortest path to an optimal goal \(G \).

• \(f(G_2) > f(G) \) from above
• \(h(n) \leq h^*(n) \) since \(h \) is admissible
• \(g(n) + h(n) \leq g(n) + h^*(n) \)
• \(f(n) \leq f(G) \)

Hence \(f(G_2) > f(n) \), and A* will never select \(G_2 \) for expansion.

Consistent heuristics

• A heuristic is consistent if for every node \(n \), every successor \(n' \) of \(n \) generated by any action \(a \),

\[
h(n) \leq c(n,a,n') + h(n')
\]

• If \(h \) is consistent, we have

\[
f(n') = g(n') + h(n')
= g(n) + c(n,a,n') + h(n')
\geq g(n) + h(n)
= f(n)
\]

• i.e., \(f(n) \) is non-decreasing along any path.
• Theorem: If \(h(n) \) is consistent, A* using \textsc{graph-search} is optimal.

Optimality of A*

• A* expands nodes in order of increasing \(f \) value
• Gradually adds “f-contours” of nodes
• Contour \(i \) has all nodes with \(f = f_i \), where \(f_i < f_{i+1} \)

Properties of A**

• **Complete?** Yes (unless there are infinitely many nodes with \(f \leq f(G) \))
• **Time?** Exponential
• **Space?** Keeps all nodes in memory
• **Optimal?** Yes
Admissible heuristics

E.g., for the 8-puzzle:
• \(h_1(n) \) = number of misplaced tiles
• \(h_2(n) \) = total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

\(h_1(S) = ? \)
\(h_2(S) = ? \)

Dominance

• If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible)
• then \(h_2 \) dominates \(h_1 \)
• \(h_2 \) is better for search

Typical search costs (average number of nodes expanded):

\(d=12 \)
\(\text{IDS} = 3,644,035 \text{ nodes} \)
\(A^*(h_1) = 227 \text{ nodes} \)
\(A^*(h_2) = 73 \text{ nodes} \)

\(d=24 \)
\(\text{IDS} = \text{too many nodes} \)
\(A^*(h_1) = 39,135 \text{ nodes} \)
\(A^*(h_2) = 1,641 \text{ nodes} \)

Relaxed problems

• A problem with fewer restrictions on the actions is called a relaxed problem
• The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
• If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then \(h_1(n) \) gives the shortest solution
• If the rules are relaxed so that a tile can move to any adjacent square, then \(h_2(n) \) gives the shortest solution
Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution

- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens

- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: n-queens

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-climbing search

- "Like climbing Everest in thick fog with amnesia"

```
function Hill-Climbing(problem) returns a state that is a local maximum
    inputs: problem, a problem
    local variables: current, a node
                    neighbor, a node
    current = Make-Node(Initial-State[problem])
    loop do
        neighbor = a highest-valued successor of current
        if Value[neighbor] >= Value[current] then return State[current]
        current = neighbor
```
Hill-climbing search: 8-queens problem

- $h =$ number of pairs of queens that are attacking each other, either directly or indirectly
- $h =$ 17 for the above state

Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
         schedule, a mapping from time to "temperature"
local variables: current, a node
next, a node
T, a "temperature" controlling prob. of downward steps

current ← Make-Node(Initial-State[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^(-ΔE/T)
```

Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, airline scheduling, etc
Local beam search

- Keep track of \(k \) states rather than just one
- Start with \(k \) randomly generated states
- At each iteration, all the successors of all \(k \) states are generated
- If any one is a goal state, stop; else select the \(k \) best successors from the complete list and repeat.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with \(k \) randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation

- Fitness function: number of non-attacking pairs of queens (min = 0, max = \(8 \times 7/2 = 28 \))
 - \(24/(24+23+20+11) = 31\% \)
 - \(23/(24+23+20+11) = 29\% \) etc