Learning	Symbolic
Symbolic Non-Symbolic Neural Networks	The approach to learning covered in this segment will be quite a bit different from that of neural networks. The output of the learning procedure will be a symbolic expression that is interpretable and can be combined with other knowledge in symbolic form. On the other hand the approaches to be covered here are very sensitive to noisy data. The neural network approach is relatively robust in the presence of noise.
Intro to IS CS520 Spring 2006 1	Intro to IS CS520 Spring 2006 2
Topics	Learning Decision Trees
The topics to be considered are as follows: 1) Decision Trees 2)Learning Logical Descriptions (a) Current best hypothesis (b) Version Spaces	Consider the following data set from Russell and Norvig. It consists of twelve restaurant visits. They are characterized by 10 different attributes. The goal to be learned is whether or not the people involved in these visits will wait at the restaurant for a table or go elsewhere.

CS520

Spring 2006 4

Rest	aurant Exan	nple	In	ductive Learn	ing
			have a set o the categori (X, Y) X = y = f(x) From a colle h that approx	zation that we wan input Y = output ection of examples, oximates f as close	rs. The output Y is nt to learn.
(Table From I	Russell and Norv	ig)			
Intro to IS	CS520	Spring 2006 5	Intro to IS	CS520	Spring 2006 6
Restauran	nt Example (Continued		The Algorith	n
tree actually u	ised by the custo found in the restant te?	e. It is the decision omers to generate aurant visits given <u>0 - 10</u> Hungry? Yes Alternate?	above. The on the data should be id	h should give the set – but there is	not guarantee that

CS520

Fri/Sat?

Yes

Yes

No Yes

No

No

No

Yes

Raining?

Yes

Yes

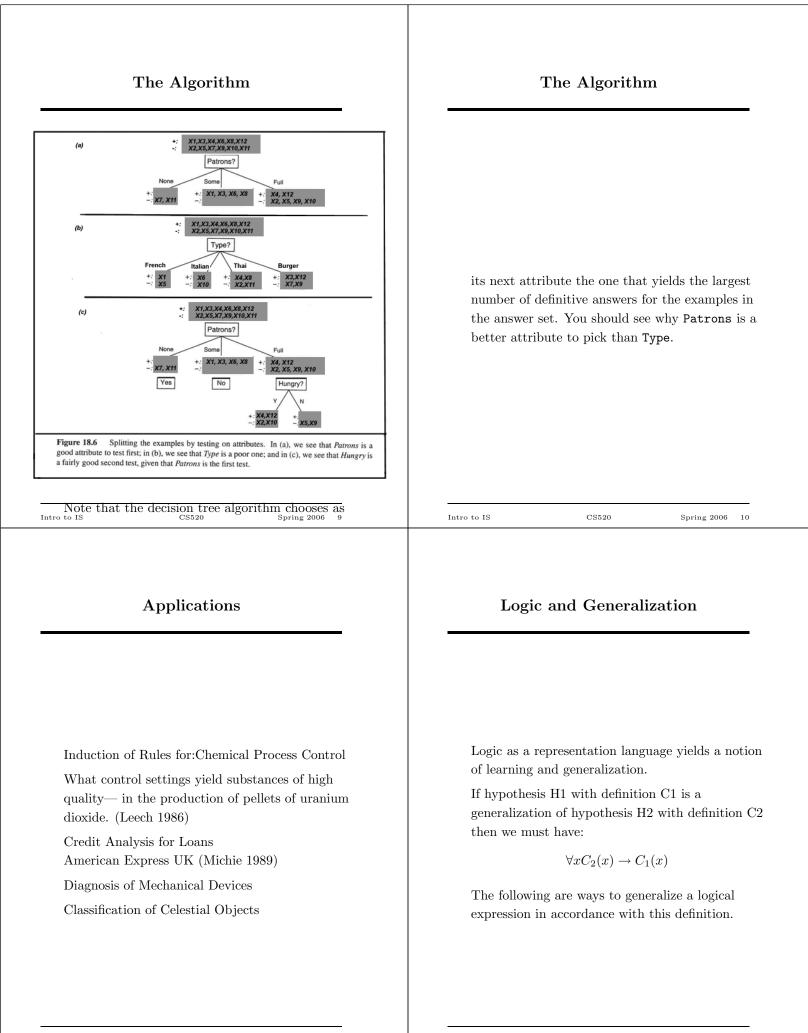
No

Ňo

No

Bar?

No


No

Reservation?

Yes

Yes

Yes

11

CS520

Generalization (cont)

Generalization (cont)

1.Replacing Constants with Variables Color(Obj1, red) Generalizes to Color(X, red) Color(obj, red) => Color(Obj, X)

2) Adding a disjunct to an expression

 If we know that primary-Color is a superclass of Color(x,red) generalizes to Color(x, primary-color)

Spring 2006 14

Intro	to	IS	

Spring 2006 13

Current Best Hypothesis Search

CS520

The idea here is to just keep the best hypothesis. So, one begins with a positive example and constructs an expression that covers the positive example and as little else as possible.

Then when a negative example is considered, the hypothesis is specialized to exclude the negative example — but yet to still include all positive examples considered so far.

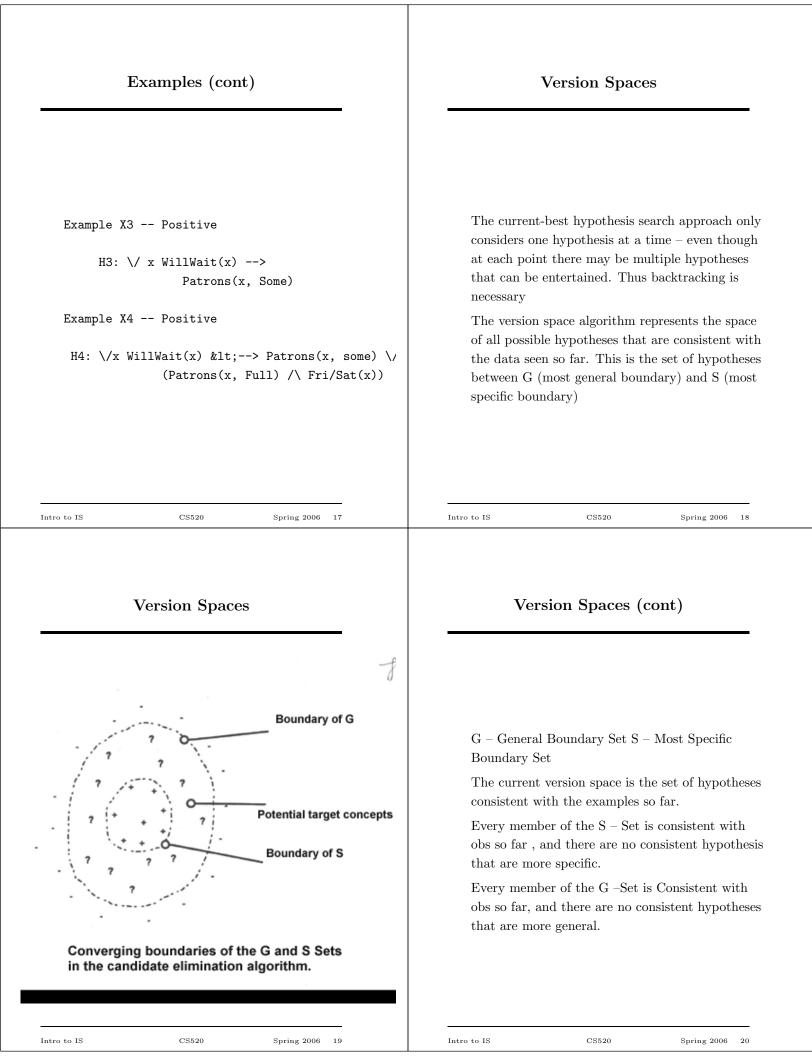
When a positive example is considered, the hypothesis is generalized to cover this positive example, but yet to still not cover any of the negative examples considered so far.

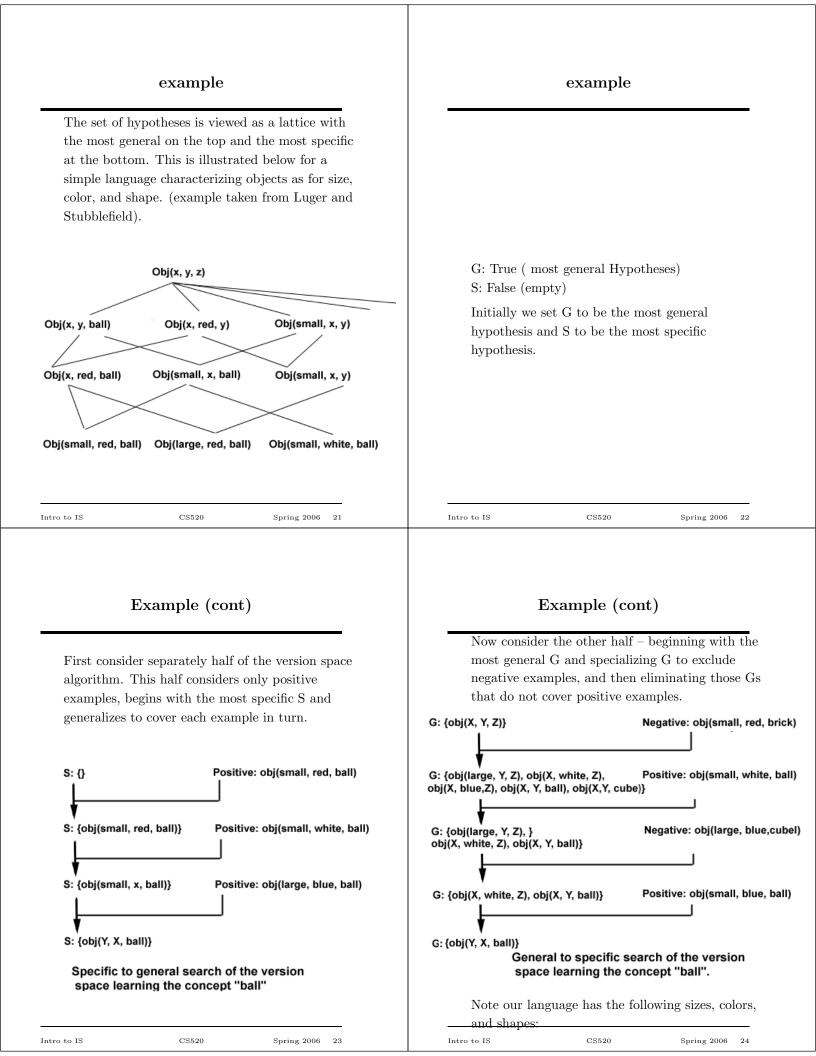
CS520

Examples

CS520

Example X1 -- Positive


H1: \/ x WillWait(x) <--> Alternate


Example X2 -- Negative

H2: \/ x WillWait(x) <--> Alternate(x) /\ Patrons(x, s)

15

Intro to IS

Example (cont)	Candidate Elimination Algorithm
small, large red, white, blue cubes, bricks, balls	<pre>Now we put both halfs of the algorithm together and modify both S and G as examples are considered. Initialize G to contain one element, the null description (all variables) Initialize S to contain one element: the first positive example. i)For each new positive instance p: Delete all members of G that fail to match P. For every s in S, if s does not match P, replace s with its most specific generalizations that match P. Delete from S any hypothesis more general than some other hypothesis in S Delete from S any hypothesis more general than some hypothesis in G</pre>
Intro to IS CS520 Spring 2006 25 Candidate Elimination Algorithm (cont)	Intro to IS CS520 Spring 2006 26
 ii)For each new negative instance n: Delete all members of s that match n. For each g in G that matches n, replace g with its most general specializations that do not match n. Delete from G any hypothesis more specific than some other hypothesis in G. Delete from G any hypothesis more specific than some hypothesis in S. iii)If G = S and both are singletons Concept found If G, S become empty, Fail 	Now here is the algorithm put together on the same example.