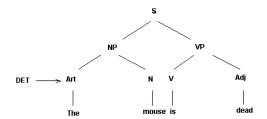
Communication among Agents

Communication: -The intentional exchange of information brought about by the production and perception of signs drawn from a shared system of conventional signs.

Parsing: recovering the phrase structure of an utterance given a grammar.

- Air Travel Information Systems (ATIS)
 - 1. Show me the flight from Atlanta to Boston on Friday.
 - 2. What is the cheapest fare?
- Machine Translation Systems weather Rpts in Canada
- Front-Ends to Databases


Parse Trees

CS520

Spring 2006 1

Here is a parse tree for an English sentence.

CS520

Context-Free Grammars

CS520

Below is a context free grammar. $X \to AB$

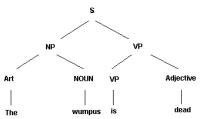
- 1. $EXPR \rightarrow Number$
- 2. $EXPR \rightarrow Variable$
- 3. $EXPR \rightarrow (EXPR + EXPR)$
- 4. $EXPR \rightarrow (EXPR * EXPR)$

Intro to IS

3

Intro to IS

Spring 2006 2


Context-Free Grammars (cont)	Grammar
EXPR (EXPR * EXPR) (EXPR + EXPR) NUMBER VARIABLE VARIABLE 3 Y Z	A Grammar defines the legal expressions in a language. The sequence of rewrite rules used to derive a sentence in this language reveals the structure of the sentence, and extractions this structure is called parsing the sentence.
Above is a parse tree for the expression $((Y + Z) * 3)$ given the above grammar.	
Intro to IS CS520 Spring 2006 5	Intro to IS CS520 Spring 2006 6
The Lexicon for E	The Grammar for E
Consider the grammar below (from Russell and Norvig) for a fragment of English - E. Noun> Stench breeze glitter nothing wvmpus r Verb> is see smell shoot feel stink go grat Adjective> right left east south black smelly Adverb> here there nearby ahead right left Pronnun> me you I it Article> the a an Preposition> to in on near Conjunction> and or but Digit> 0 1 2 3 4 5 6 7 8 9	<pre>S> NP VP I + feel a breeze S conjunction S I feel a breeze + and + I smell a wun NP> Pronoun I Noun pits Article Noun the wumpus Digit Digit 34 NP PP the wumpus + to the east NP Rel_Clause the wumpus + that is sme VP> Verb stinks VP NP feel + a breeze VP Adjective is + smelly VP PP turn + to the east VP Adverb go + ahead PP> preposition NP to + the east RelClause> that VP that + is smelly</pre>
Intro to IS CS520 Spring 2006 7	Intro to IS CS520 Spring 2006 8

Parsing	Parsing (cont)
Maintain a parse forest initially list of words At each iteration: Match some subsequence of elements in the forest with the right-hand side of a grammar rule. Then replace the subsequence with a single parse tree whose category is the left-hand	<pre>So, starting off with the following sentence: The wumpus is alive. After matching with the rule below: Article -> the The first word in the sentence is replaced by a tree with the parent being Article and the child being the.</pre>
Intro to IS CS520 Spring 2006 9	Intro to IS CS520 Spring 2006 10
Parsing (cont)	Parse Tree Example

The whole process is illustrated below:	
forest	rule
The wumpus is dead.	Article -> the
Article wumpus is dead.	Noun -> wumpus
Article Noun is dead.	NP> Article Noun
NP is dead.	Verb> is
NP Verb dead.	Adjective> dead
NP Verb Adjective.	VP> Verb
NP VP Adjective.	VP> VP Adjective
NP VP	S> NP VP
S	

CS520

The final result is the following tree:

jbr;

Definite Clause Grammar

Note that context-free rules have the form of definite clauses. These are clauses with exactly one positive literal. There is a ready encoding of such grammatical rules into Prolog.

We can define a predicate sentence that will allow us to determine whether or not a particular string of words (representated as a list of atoms) is a legal sentence in the language. Or we can ask Prolog to generate all legal sentences.

Definite Clause Grammar (cont)

```
?-sentence([the, man, eats, the, apple ])
?-Sentence(X)
A simple grammar is given below:
sentence(x) :-
      append(Y, Z, X), noun-phrase(Y),
                               verb_phrase(Z).
noun_phrase(x) :-
      append(Y, Z, X), determiner(Y), noun(Z).
verb_phrase(X):-
      append(Y, Z, X), verb(Y), noun_phrase(Z).
verb_phrase(X) :- verb(X).
determiner([the]).
verb([eats]).
noun([apple]).
verb([sings]).
noun([man]).
```

CS520

Spring 2006 14

Semantic Analysis

CS520

Spring 2006 13

Intro to IS

Output of the parsing procedure is a representation of the meaning of the sentence in something like first-order logic.

''block B is on block C and block B is clear''

===>

On(B,C) ^ clear(B) ^ Block(B) ^ Block(C)

The Definite Clause Grammar given above in Prolog can be modified to output a semantic representation.

CS520

Intro to IS

15