
Prolog

Prolog was invented in the early 1970s by
Alan Colmerauer and his colleagues in
Marseille: Their major interest was
Natural Language Processing. The
deductive mechanism behind Prolog is
based on Robert Kowalski’s work on
refinements of resolution (SLD) for Horn
clauses.

• Monmouth has Sicstus Prolog developed by
the Swedish Institute of Computer Science.
http://www.sics.se

• An excellent Prolog - Amzi Logic Explorer
free for PCS(Both Linux and Windows).
http://www.amzi.com

CS520 Introduction to Intell Systems Spring 2006 1

References

• Learn Prolog Now! by Patrick Blackburn,
Johan Bos and Kristina Striegnitz

• Chapters 5 and 6 of Brachman and Levesque

• Introduction to Programming in Prolog by
Danny Crookes. NewYork: Prentice Hall 1988

• Programming in Prolog by W.F.Clocksin and
C.S. Mellish Fourth Edition. Berlin:
Springe-verlag 1994

CS520 Introduction to Intell Systems Spring 2006 2

Horn Clauses

Horn Clauses are clauses that have at
most one positive literal. If there is one
positive literal, then the clause is a rule
whose consequent is the single positve
literal and whose antecedent is a
conjunction of positive literals.

• Rules H :- B1,....Bn

• A fact is a single postiive literal.
Facts H :-

• A goal (query) is a conjunction of negative
literals.
Goals :- B1,...Bn

CS520 Introduction to Intell Systems Spring 2006 3

Interaction

The user submits questions to the prolog
system and receives answers based on
information contained in the database of
facts, and the rules that have been loaded
into the prolog system.

CS520 Introduction to Intell Systems Spring 2006 4

Interaction

CS520 Introduction to Intell Systems Spring 2006 5

A Sample Database

has_vacancy(harvard, secretary).

has_vacancy(prentice_hall, author).

has_vacancy(ibm, salesman).

has_vacancy(hertz, driver).

has_vacancy(nasa, programmer).

has_vacancy(prentice_hall, secretary).

trained_as(michael, programmer).

trained_as(fred, taxidermist).

trained_as(mary, driver).

trained_as(joe, secretary).

trained_as(michael, salesman).

trained_as(elizabeth, secretary).

CS520 Introduction to Intell Systems Spring 2006 6

DB Continued

accurate(elizabeth).

accurate(mary).

accurate(michael).

accurate(fred).

outgoing(michael).

outgoing(mary).

outgoing(elizabeth).

co_ordinated(joe)

hard_working(mary)

hard_working(joe).

hard_working(michael).

literate(michael).

clear_thinking(elizabeth).

clear_thinking(michael))

intelligent(mary).

imaginative(michael).

CS520 Introduction to Intell Systems Spring 2006 7

Queries

• ?-clear thinking(elizabeth).

• ?-clear thinking(fred).

• ?-clear thinking(X)

• ?-imaginative(X), hard working(X).

CS520 Introduction to Intell Systems Spring 2006 8

Queries Continued

Note that if there is more than one object
satisfying the query, the user can type a
semicolon (;) afer the answer and prolog will
search for another binding for the variables. This
can continue until prolog can not find another
binding. It will then return no.

But Prolog can do much more than mere retrieval
of facts!

CS520 Introduction to Intell Systems Spring 2006 9

Prolog Rules

NASA might employ someone if that person is
clear thinking and reliable.

might_employ(nasa, X) :-

clear_thinking(X),

accurate(X).

?- might_employ(nasa, elizabeth).

Yes

?- might_employ(nasa,fred).

No

? might_employ(nasa, X).

X=elizabeth;

X=michael;

No

CS520 Introduction to Intell Systems Spring 2006 10

Rules Continued

If the above rule is added to the database other
plausible rules are:

acceptable(Candidate, Employer, Skill) :-

has_vacancy(Employer, Skill),

trained_as(Candidate, Skill).

acceptable(Candidate, Emplooyer, Skill) :-

has_vacancy(Employer, Skill),

\+(trained_as(Candidate, Skill),

could_be_trained_as(Candidate, Skill)

could_be_trained_as(X, secretary) :-

accurate(X),

literate(X),

outgoing(X).

could_be_trained_as(X, programmer) :-

clean_thinking(X),

accurate(X),

intelligent(X).

could_be_tranined_as(X, driver):-

co_ordinated(X)

hard_working(X),

CS520 Introduction to Intell Systems Spring 2006 11

Examples

?-could_be_trained_as(michael, secretary).

?-could_be_trained_as(mary, programmer).

CS520 Introduction to Intell Systems Spring 2006 12

Negation

Note that the

\+

is the negation operator in Sicstus Prolog. In
Amzi prolog the negation operator is the standard
not as in not (member(X, [a,b,c]))

CS520 Introduction to Intell Systems Spring 2006 13

Using Prolog

Type your program into a file and save it. Save it
with the suffix pl as in kb.pl. Then enter prolog.

?- listing.

?- [kb2].

?- listing.

?- halt.

CS520 Introduction to Intell Systems Spring 2006 14

A Family

male(philip). male(charles). female(liz).

child_of(charles, philip).

child_of(charles, liz).

parent_of(philip,charles).

parent_of(liz,charles).

father_of(X,Y):- parent_of(X,Y),

male(X)

CS520 Introduction to Intell Systems Spring 2006 15

Descendant

Consider the problem of trying to specify the
concept of descendant.

descendant_of(X,Y) :- child_of(X,Y).

descendant_of(X,Y) :- grandchild_of(X,Y).

descendant_of(X,Y) :- great_grandchild_of(X,Y).

grandchild_of(X,Y) :- child_of(X,Z),

child_of(Z,Y)

great_grandcdhild_of(X,Y) :- child_of(X,Z),

grandchild_of(Z,Y).

great_great_grandchild_of(X,Y) :- child_of(X,Z),

great_grandchild_of(Z,X).

Tedious !, Incomplete ! descendants of
Y are Y’s children, along with their
descendants

CS520 Introduction to Intell Systems Spring 2006 16

Recursive Rules

But with recursive rules this is easy.

X is a descendant of Y either if X is a
child of Y, or if X is a descendant of a
child of Y.

descendant_of(X,Y) :- child_of(X,Y).

descendant_of(X,Y) :- child_of(C,Y),

descendant_of(X,C).

?- descendant_of(X, elizabeth).

CS520 Introduction to Intell Systems Spring 2006 17

Structured Objects

Use of term structure enables one to fully utili

relatively simple expressivity of Prolog.

Object-kind(component1, component2,)

1. date(Day,Month, Year)

date(31, january, 1988)

date(25, december,1990)

CS520 Introduction to Intell Systems Spring 2006 18

Structured Objects

2. meal(starter, main course, desert)

main_course(steak, peas,chips)

meal(starter(melon, ginger),

main_course(steak, peas, chips),

desert(peaches, cream))

CS520 Introduction to Intell Systems Spring 2006 19

Structured Objects Continued

3.

book(Author, Title, Classifcation)

book(shakespeare, macbeth, qt-13....)

date_of_birth(Person, Date)

date_of_birth(fred, date(1, february, 1959)).

date_of_birth(shakespeare, date(26, april, 1564

?- date_of_birth(shakespeare, D).

D= date(26, april, 1564)).

?- date_of_birth(P, date(26, april, 1564)).

P=shakespeare

CS520 Introduction to Intell Systems Spring 2006 20

Example: Library Catalogue

in_library(book(melville,

moby_dick,

4r_14_s8)).

in_library(book (shakespeare,

romeo_and_juliet,

4r_49_s35)).

on_loan(Book, Borrower, Due_date).

on_loan(book (melville,

moby_dick, 4r_14_s8),

robinson,

date(21, november, 1988)).

on_loan(book(shakespeare,

romeo_and_juliet, 4r_49_s25),

wilson,

date(7, september, 1988)).

CS520 Introduction to Intell Systems Spring 2006 21

Lists

But the most important structured object
of all is the List – treated specially in
Prolog.

[] - empty list

[tennis, baseball, sailing, reading, judo]

[computing, programming, prolog, AI]

[tennis | X]

CS520 Introduction to Intell Systems Spring 2006 22

Lists Cont

(compare as : head , tail) The head of the list
above is tennis and X is the tail. Example:

all_rich(List)

A list is all rich if

either

the list is empty

or

the list has the structure [Person1 | Tail

and

Person1 is rich

and

Tail is all rich.

all_rich([]).

all_rich([Person1 | Tail]) :- rich(Person1),

all_rich(Tail).

CS520 Introduction to Intell Systems Spring 2006 23

Example: Member

A very simple program defines the member relatio

Definition of Member

member(X, [X | _]).

member(X, [_ | Y]) : - member(X,Y).

?- member(d, [a,b,c,d,e,f,g]).

YES

?- member(2, [3,a,4,f]).

NO

CS520 Introduction to Intell Systems Spring 2006 24

Example: Append

Another very simple function definds the append

append([],L,L).

append([X|L1], L2, [X | L3])

: - append(L1, L2, L3).

?- append(X,Y,[a, b,c]).

X= []

Y= [a, b, c]?;

X= [a];

Y= [b, c]?;

X= [a, b],

y= [c]?;

X= [a, b ,c],

Y= []?;

no

CS520 Introduction to Intell Systems Spring 2006 25

Arithmetic

variable is expression

?- X is 2 * 8 + 5.

X=21

?- X is 12, X is 10.

no.

?- X is 12, Y is 3 * X -1.

X=12, Y=35.

CS520 Introduction to Intell Systems Spring 2006 26

DB Continued

in_range(N, Lower, Upper)

:- N >= Lower, N <= Upper.

?- in_range(10, 1 ,100)

Yes

?- in_range(0, 1,10)

No.

Sum of a List

Sum([],0)

Sum([Head | Tail], S) :- Sum(Tail, T),

S is Head + T.

CS520 Introduction to Intell Systems Spring 2006 27

Cut!

foo :- a, b, c, !, d, e, f

When a cut is encountered as a goal, the
system thereupon becomes committed to
all choices made since the parent goal was
invoked. All other alternatives are
discarded. Hence an attempt to re-satisfy
any goal between the parent goal and the
cut goal will fail.

facility(Pers, Fac):-

book_overdue(Pers, Book),

!,

basic_facility(Fac).

CS520 Introduction to Intell Systems Spring 2006 28

Cut Continued

facility(Pers, Fac):- general_facility(Fac).

basic_facility(references).

basic_facility(enquiries).

additional_facility(borrowing).

additional_facility(inter_library_loan).

general_facility(X) :- basic_facility(X).

general_facility(X) :- additional_facility(X).

book_overdue(’C.Watzer’, book10089).

book_overdue(’R.Scherl’, book29907).

client(’A. Sones’).

client(’R.Scherl’).

?-client(X), Facility(X,Y).

CS520 Introduction to Intell Systems Spring 2006 29

