
Prolog

Prolog was invented in the early 1970s by
Alan Colmerauer and his colleagues in
Marseille: Their major interest was
Natural Language Processing. The
deductive mechanism behind Prolog is
based on Robert Kowalski’s work on
refinements of resolution (SLD) for Horn
clauses.

• Monmouth has Sicstus Prolog developed by
the Swedish Institute of Computer Science.
http://www.sics.se

• An excellent Prolog - Amzi Logic Explorer
free for PCS( Both Linux and Windows).
http://www.amzi.com
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Horn Clauses

Horn Clauses are clauses that have at
most one positive literal. If there is one
positive literal, then the clause is a rule
whose consequent is the single positve
literal and whose antecedent is a
conjunction of positive literals.

• Rules H :- B1,....Bn

• A fact is a single postiive literal.
Facts H :-

• A goal (query) is a conjunction of negative
literals.
Goals :- B1,...Bn
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Interaction

The user submits questions to the prolog
system and receives answers based on
information contained in the database of
facts, and the rules that have been loaded
into the prolog system.
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Interaction
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A Sample Database

has_vacancy(harvard, secretary).

has_vacancy(prentice_hall, author).

has_vacancy(ibm, salesman).

has_vacancy(hertz, driver).

has_vacancy(nasa, programmer).

has_vacancy(prentice_hall, secretary).

trained_as(michael, programmer).

trained_as(fred, taxidermist).

trained_as(mary, driver).

trained_as(joe, secretary).

trained_as(michael, salesman).

trained_as(elizabeth, secretary).
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DB Continued

accurate(elizabeth).

accurate(mary).

accurate(michael).

accurate(fred).

outgoing(michael).

outgoing(mary).

outgoing(elizabeth).

co_ordinated(joe)

hard_working(mary)

hard_working(joe).

hard_working(michael).

literate(michael).

clear_thinking(elizabeth).

clear_thinking(michael))

intelligent(mary).

imaginative(michael).
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Queries

• ?-clear thinking(elizabeth).

• ?-clear thinking(fred).

• ?-clear thinking(X)

• ?-imaginative(X), hard working(X).
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Queries Continued

Note that if there is more than one object
satisfying the query, the user can type a
semicolon (;) afer the answer and prolog will
search for another binding for the variables. This
can continue until prolog can not find another
binding. It will then return no.

But Prolog can do much more than mere retrieval
of facts!
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Prolog Rules

NASA might employ someone if that person is
clear thinking and reliable.

might_employ(nasa, X) :-

clear_thinking(X),

accurate(X).

?- might_employ(nasa, elizabeth).

Yes

?- might_employ(nasa,fred).

No

? might_employ(nasa, X).

X=elizabeth;

X=michael;

No

CS520 Introduction to Intell Systems Spring 2006 10

Rules Continued

If the above rule is added to the database other
plausible rules are:

acceptable(Candidate, Employer, Skill) :-

has_vacancy(Employer, Skill),

trained_as(Candidate, Skill).

acceptable(Candidate, Emplooyer, Skill) :-

has_vacancy(Employer, Skill),

\+(trained_as(Candidate, Skill),

could_be_trained_as(Candidate, Skill)

could_be_trained_as(X, secretary) :-

accurate(X),

literate(X),

outgoing(X).

could_be_trained_as(X, programmer) :-

clean_thinking(X),

accurate(X),

intelligent(X).

could_be_tranined_as(X, driver):-

co_ordinated(X)

hard_working(X),
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Examples

?-could_be_trained_as(michael, secretary).

?-could_be_trained_as(mary, programmer).
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Negation

Note that the

\+

is the negation operator in Sicstus Prolog. In
Amzi prolog the negation operator is the standard
not as in not (member(X, [a,b,c]))
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Using Prolog

Type your program into a file and save it. Save it
with the suffix pl as in kb.pl. Then enter prolog.

?- listing.

?- [kb2].

?- listing.

?- halt.
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A Family

male(philip). male(charles). female(liz).

child_of(charles, philip).

child_of(charles, liz).

parent_of(philip,charles).

parent_of(liz,charles).

father_of(X,Y):- parent_of(X,Y),

male(X)
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Descendant

Consider the problem of trying to specify the
concept of descendant.

descendant_of(X,Y) :- child_of(X,Y).

descendant_of(X,Y) :- grandchild_of(X,Y).

descendant_of(X,Y) :- great_grandchild_of(X,Y).

grandchild_of(X,Y) :- child_of(X,Z),

child_of(Z,Y)

great_grandcdhild_of(X,Y) :- child_of(X,Z),

grandchild_of(Z,Y).

great_great_grandchild_of(X,Y) :- child_of(X,Z),

great_grandchild_of(Z,X).

Tedious !, Incomplete ! descendants of
Y are Y’s children, along with their
descendants
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Recursive Rules

But with recursive rules this is easy.

X is a descendant of Y either if X is a
child of Y, or if X is a descendant of a
child of Y.

descendant_of(X,Y) :- child_of(X,Y).

descendant_of(X,Y) :- child_of(C,Y),

descendant_of(X,C).

?- descendant_of(X, elizabeth).
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Structured Objects

Use of term structure enables one to fully utili

relatively simple expressivity of Prolog.

Object-kind(component1, component2, ......)

1. date(Day,Month, Year)

date(31, january, 1988)

date(25, december,1990)
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Structured Objects

2. meal(starter, main course, desert)

main_course(steak, peas,chips)

meal(starter(melon, ginger),

main_course(steak, peas, chips),

desert(peaches, cream))
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Structured Objects Continued

3.

book( Author, Title, Classifcation)

book( shakespeare, macbeth, qt-13....)

date_of_birth(Person, Date)

date_of_birth( fred, date(1, february, 1959)).

date_of_birth( shakespeare, date(26, april, 1564

?- date_of_birth( shakespeare, D).

D= date(26, april, 1564)).

?- date_of_birth( P, date(26, april, 1564)).

P=shakespeare
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Example: Library Catalogue

in_library( book( melville,

moby_dick,

4r_14_s8)).

in_library( book ( shakespeare,

romeo_and_juliet,

4r_49_s35)).

on_loan( Book, Borrower, Due_date).

on_loan( book (melville,

moby_dick, 4r_14_s8),

robinson,

date(21, november, 1988)).

on_loan(book(shakespeare,

romeo_and_juliet, 4r_49_s25),

wilson,

date( 7, september, 1988)).
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Lists

But the most important structured object
of all is the List – treated specially in
Prolog.

[ ] - empty list

[ tennis, baseball, sailing, reading, judo ]

[ computing, programming, prolog, AI ]

[ tennis | X ]
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Lists Cont

(compare as : head , tail) The head of the list
above is tennis and X is the tail. Example:

all_rich( List )

A list is all rich if

either

the list is empty

or

the list has the structure [ Person1 | Tail

and

Person1 is rich

and

Tail is all rich.

all_rich([]).

all_rich([Person1 | Tail]) :- rich(Person1),

all_rich(Tail ).
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Example: Member

A very simple program defines the member relatio

Definition of Member

member(X, [X | _]).

member(X, [_ | Y]) : - member(X,Y).

?- member(d, [a,b,c,d,e,f,g]).

YES

?- member(2, [3,a,4,f]).

NO
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Example: Append

Another very simple function definds the append

append([],L,L).

append([ X|L1], L2, [X | L3])

: - append( L1, L2, L3).

?- append(X,Y,[a, b,c]).

X= []

Y= [a, b, c]?;

X= [ a ];

Y= [b, c]?;

X= [ a, b],

y= [ c ]?;

X= [ a, b ,c],

Y= []?;

no
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Arithmetic

variable is expression

?- X is 2 * 8 + 5.

X=21

?- X is 12, X is 10.

no.

?- X is 12, Y is 3 * X -1.

X=12, Y=35.

CS520 Introduction to Intell Systems Spring 2006 26

DB Continued

in_range(N, Lower, Upper)

:- N >= Lower, N <= Upper.

?- in_range(10, 1 ,100)

Yes

?- in_range(0, 1,10)

No.

Sum of a List

Sum([ ],0 )

Sum([Head | Tail ], S) :- Sum(Tail, T),

S is Head + T.
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Cut!

foo :- a, b, c, !, d, e, f

When a cut is encountered as a goal, the
system thereupon becomes committed to
all choices made since the parent goal was
invoked. All other alternatives are
discarded. Hence an attempt to re-satisfy
any goal between the parent goal and the
cut goal will fail.

facility(Pers, Fac):-

book_overdue(Pers, Book),

!,

basic_facility(Fac).
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Cut Continued

facility(Pers, Fac):- general_facility(Fac).

basic_facility(references).

basic_facility(enquiries).

additional_facility(borrowing).

additional_facility(inter_library_loan).

general_facility(X) :- basic_facility(X).

general_facility(X) :- additional_facility(X).

book_overdue(’C.Watzer’, book10089).

book_overdue(’R.Scherl’, book29907).

client(’A. Sones’).

client(’R.Scherl’).

?-client(X), Facility(X,Y).
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