
Int J Software Informatics, Vol.3, No.1, March 2009, pp. 3–29 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

2009 by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

State-Based Regression with Sensing and

Knowledge∗

Richard Scherl1, Tran Cao Son2, and Chitta Baral3

1(CS Department, Monmouth University, West Long Branch, NJ, USA, rscherl@monmouth.edu)

2(CS Department, New Mexico State University, Las Cruses, NM, USA, tson@cs.nmsu.edu)

3(CS and Engineering, Arizona State University, Tempe, AZ, USA, chitta@asu.edu)

Abstract This paper develops a state-based regression method for planning domains with

sensing operators and a representation of the knowledge of the planning agent. The language

includes primitive actions, sensing actions, and conditional plans. The regression operator is

direct in that it does not depend on a progression operator for its formulation. We prove the

soundness and completeness of the regression formulation with respect to the definition of

progression and the semantics of a propositional modal logic of knowledge. The approach is

illustrated with a running example that can not be handled by related methods that utilize

an approximation of knowledge instead of the full semantics of knowledge as is used here. It

is our expectation that this work will serve as the foundation for the extension of work on

state-based regression planning to include sensing and knowledge as well.

Key words: regression; plans; knowledge; sensing

Scherl R, Son TC, Baral C. State-Based regression with sensing and knowledge. Int J

Software Informatics, 2009, 3(1): 3–29. http://www.ijsi.org/1673-7288/3/3.htm

1 Introduction

Progression and regression are two important reasoning methods in reasoning
about actions and change. Progression is defined for computing the possible states
resulting from the execution of a plan from a given state. Formally, the progression
function could be defined as a mapping

F : Actions× States −→ 2States (1)

where States denotes the set of possible states of the world and Actions denotes the
set of actions. This function is then extended to compute the result of the execution
of a plan from a given state. Regression, on the other hand, is used to determine
the possible states of the world, from which the execution of a given plan results
in some states satisfying a predefined formula. Given the progression function F ,

* This effort is sponsored by the DTO’s AQUAINT program under award number N61339-06-C-0143;
the Knowledge Fusion Center of the Army Research Laboratory under contract number DAAD-03-
2-0034; NSF under grant number 0412000 and from ONR-MURI number N00014-07-1-1049; NSF
grants IIS-0812267, EIA-0220590, and CNS-0454066.
Corresponding author: Richard Scherl, Email: rscherl@monmouth.edu
Manuscript received 2009-03-22; revised 2009-07-06; accepted 2009-07-15.

4 International Journal of Software and Informatics, Vol.3, No.1, March 2009

mathematically, the regression function R should be defined by the inverse of F ; i.e.,
given a formula ϕ and an action a, the regression function R is defined by a mapping

R : Formulas×Actions −→ Formulas (2)

where Formulas is the set of formulas. Each formula (from the domain and the range
of R) characterizes a set of states, such that

R(φ, a) = ψ if and only if ∀s1, s2.(s1 |= ψ ∧ s2 ∈ F (a, s1) → s2 |= φ)

where |= denotes the usual entailment relation between states and formulas. For
action domains with sensing actions and incomplete information, this is the formula
for regression adopted in Refs.[25, 15].

By defining the regression function as the inverse of the progression function,
we obtain a generic formalism that is ready for use in action domains in which the
progression function is known. However, this definition is not constructive, i.e., to
compute the result of regression on a formula, one might have to guess the answer
and then verify it using the progression function. Given that the complexity of the
problem of computing the result of regression is NP-complete[15], which holds even if
actions are deterministic, this is not a surprise.

Despite the computational complexity of this problem, several regression for-
malisms for action theories with sensing actions and incomplete information have been
investigated[25,13, 15, 17, 18, 23] and some have been successfully implemented[15, 23]. Re-
gression formalisms can be classified by their use of Equation (2) in their definition
of regression. In some proposals, Refs.[25, 15], the regression function is defined by
Equation (2). We call these proposals indirect definitions of the regression function.
In other formalisms, the regression function is defined directly, i.e., no reference to
the progression function is used in its definition and Equation (2) serves as a means
for the verification of its soundness and completeness[13, 17, 18, 23].

Works that define a direct regression function follow two patterns: one defines
the function on formulas and another defines the function on sets of states or formulas
in conjunctive normal forms. The later, also referred to as state-based regression, has
been implemented in a conditional planner[23], which is competitive against several
other conditional planners[22]. This result is also in line with the success of regression
planners in classical planning[2, 10].

In this paper, we develop a direct regression function for domains that include
sensing actions, knowledge, and conditional actions. The work developed here can be
seen as an extension of the work of Ref.[23] to be sound and complete with respect to
the full semantics of knowledge and actions with conditional effects. To the best of
our knowledge, the proposal developed in this paper is the first state-based regression
formalism which has these properties. Needless to say, this completeness is obtained at
the cost of greater complexity (as discussed from a theoretical perspective in Ref.[1]),
but the greater expressivity is needed for many problems such as the illustrative
example used in this paper. The completeness (and soundness) of the regression
operator is shown with respect to the definition of progression and the semantics of
a propositional modal logic of knowledge.

It is our expectation that this work will serve as the foundation for the extension
of the promising state-based regression planning methods[10, 2] to domains that include

Richard Scherl, et al.: State-Based regression with sensing and knowledge 5

sensing and a representation of the knowledge of the planning agent. The development
of conditional planning algorithms based on the regression operator presented here is
not discussed in this paper, but forms an important part of our future work in this
area.

Our planning language is defined in Section 2 and the semantics based on a pro-
gression function is covered in Section 3. An extended example that will be used
throughout this paper is introduced in Section 4. Section 5 describes our regression
operator and proves the regression method to be sound and complete with respect
to progression. Additionally, the extended example is used to illustrate the method.
Section 7 discusses related work and finally the conclusions are summarized in Sec-
tion 8.

2 Language

A planning domain D = 〈F,Ons,Ose,A, I,G〉 consists of a finite set of propo-
sitional fluent symbols F, a finite set of ordinary (nonsensing) action operators Ons,
a finite set of sensing action operators Ose, a representation A of the preconditions
and effects of these action operators, a specification of the initial state of the world I,
and a specification of the goal state G. The propositional fluent symbols include the
symbol 	 that is true in all interpretations.

The representation of the initial state I consists of propositions of the form
initially ϕ, where ϕ is an arbitrary propositional formula formed from F. For ex-
ample: initially ¬P3 and initially P1 ∨ P2.

The planner is given knowledge of this initial state of the world. Note that in
the example to follow, the use of implication in something of the form P1 → P2 is
merely an abbreviation for ¬P1 ∨ P2.

A goal G (e.g., P1 ∧ ¬P2) is always a conjunction of literals. The goal of the
planner is to achieve knowledge of these literals and also know that they are achieved.

The specification of actions (non-sensing actions) A, indicates the effects (with
conditions) and also executability preconditions of all actions in O. Both the ef-
fects, conditions, and executability conditions are restricted to be conjunctions of
literals which we represent as sets of literals. Consider an arbitrary action act1 :
Effect: {{P1

1, . . . ,P
1
n1} ⇒ {Q1

1, . . . ,Q
1
m1}, . . . {Pj

1, . . . ,P
j
nj} ⇒ {Qj

1, . . . ,Q
j
mj}}

ExCond: {R1, . . . ,Ro}
The effect is a set of condition-effect pairs. The action act1 is executable in a

state as long as the conjunction of {R1, . . . ,Ro} holds. For each i, the conjunction
of the literals {Qi

1, . . . ,Q
i
mi} must hold in the successor state if the conjunction of

{Pi
1, . . . ,P

i
ni} holds in the state in which the action begins. It is required that the

conditions of the various condition-action pairs be mutually exclusive. Therefore no
more than one condition can hold in any single state. It is assumed that the language
includes an action noOp that has one condition-effect with the condition as 	, an
empty consequent, and ExCond as 	.

Some notation is useful to talk about the specifications of actions. The function
excond(a) returns the ExCond of action a. The function effects(a) returns a set
of pairs consisting of the antecedent and consequent of the conditional effect. Given
such a pair e, the function condition(e) yields a list of literals that constitutes the
antecedent or condition of effect e and the function head(e) yields the list of literals

6 International Journal of Software and Informatics, Vol.3, No.1, March 2009

that constitutes the consequent of e. For a literal l, l̄ denotes its complementary
literal; for a set of literals S, S̄ = {l̄ | l ∈ S}.

There are also sensing actions that determine the truth of a fluent:

sense1 : Effect: {} Determines: P1 ExCond: {R1, . . . ,Ro}
The sensing action sense1 determines the truth of proposition P1, called the

sensed-fluent, and is executable if the conjunction {R1, . . . ,Ro} is satisfied. Given a
sensing action a, determines(a) returns the sensed-fluent of action a. The restriction
to a single fluent is not more restrictive than a set of fluents since a sequence of
sensing actions can be equivalent to a sensing action that determines a set (i.e., a
conjunction) of literals. Note that since we require that the Effect component be
empty, it is ensured that sensing actions have no effect on the world

Plans are constructed out of a sequence of actions and the if/then constructs are
called conditional plans. For simplicity of the presentation of the definitions in this
paper, we do impose some restrictions on the form of conditional plans as indicated
in the following definition:

Definition 1 (Plan). Let a be an action.
1. [] is a plan.
2. a; c is a plan if c is a plan and a is a non-sensing action.
3. a; [if f then c1 else c2] is a plan if a is a sensing action, which senses f ,

and c1 and c2 are plans.
It is easy to see that every conditional plan is either a sequence of non-sensing

actions or of the from a1; . . . ; ak; a; [if f then c1 else c2] where a1, . . . , ak is a
sequence of non-sensing actions, a is a sensing action, which senses f , and c1 and c2
are plans.

The restriction to have sensing actions only occur immediately prior to a condi-
tional construct (and to require that the sensed fluent be identical to the conditional
fluent) is made to simplify the proofs. It is not a restriction in the expressivity of the
language of plans since one can always replace something of the form α; sense(f); γ
by α, sense(f), [if f then γ else γ].

3 Progression

A state is a complete (i.e., for each fluent f either f or ¬f is included) and
consistent set of fluent literals (i.e., for each fluent f both f and ¬f are not included).
It is a propositional representation of the truth (falsity) of propositions in a particular
possible world. A knowledge set (or k-set) is a set of states. A combined structure
(or c-structure) is a pair 〈s,Σ〉 where Σ is a k-set and s is a state belonging to Σ. A
partial state (or p-state) is a consistent set of fluent literals. A partial structure (or
p-structure) is a pair 〈δ,Δ〉 where Δ is a set of p-states and δ is a p-state belonging
to Δ. A p-structure γ = 〈δ,Δ〉 extends a p-structure γ′ = 〈δ′,Δ′〉, denoted by γ′ � γ,
if (i) δ′ ⊆ δ; (ii) for each λ ∈ Δ there exists some λ′ ∈ Δ′ such that λ′ ⊆ λ; and (iii)
for each λ′ ∈ Δ′ there exists some λ ∈ Δ such that λ′ ⊆ λ. For a set of p-structures
Δ and a p-structure γ, we write Δ � γ (resp. γ � Δ) if there exists some γ′ ∈ Δ such
that γ′ � γ (resp. γ′ � γ).

Remark 1. Each state is a p-state. Each c-structure is also a p-structure.
Thus, we can talk about the relationship � between p-structures and c-structures.

Richard Scherl, et al.: State-Based regression with sensing and knowledge 7

For example, the following are states if we consider only the fluent symbols F and
G: s1 = {F,G}, s2 = {¬F,G} , s3 = {F,¬G}, and s4 = {¬F,¬G}. If s is a state (or
more generally a p-state), then s |= l1, where l1 is a literal, means that l1 ∈ s. The
definition of |= can be inductively generalized in the obvious way to s |= ϕ where
ϕ is an arbitrary formula or a set of literals representing a conjunction of literals.
Knowledge sets are a representation of the knowledge (ignorance) of the planner. For
example, if we consider only the fluent symbols F and G, some possible knowledge
sets are: b1 = {s1, s2, s3, s4}, b2 = {s1, s4}, and b3 = {s2, s3}. If Σ is a knowledge
set, then Σ |= Knows(l1) means that ∀s ∈ Σ, s |= l1. Otherwise Σ |= ¬Knows(l1).
This definition of |= can be inductively generalized in the obvious way to define
Σ |= Knows(ϕ), where ϕ is an arbitrary formula. Given a c-structure st = 〈s,Σ〉,
st |= l1, if l1 ∈ s. Additionally, st |= Knows(l1), if Σ |= Knows(l1). For the
definition of the transition function (to be presented next), we need to introduce a
structure ⊥. For any expression Ψ, ⊥ �|= Ψ. Finally, for every c-structure 〈s,Σ〉, it
is required that s ∈ Σ. We are therefore using the semantics S5 as the basis of our
modal logic of knowledge and there is no need to allow nesting of modal operators.

Given a planning domain, we can define the initial states and initial c-structures
as follows:

Definition 2 (Initial state). A state s is an initial state of a planning domain
D if s |= ϕ for every statement initially ϕ in I.

Definition 3 (Initial c-structure). A c-structure 〈s,Σ0〉 is an initial c-
structure if every u ∈ Σ0 is an initial state.

It is straight forward to develop an algorithm that converts the conjunction of
the ϕs from each initially ϕ statement into the set of possible initial states.

Some notation will be needed in the machinery to be developed. Two p-states δ
and δ′ are compatible with respect to a set of fluent literals S, denoted by δ ∼S δ′ if
S∩δ = S∩δ′. A fluent f is specified in δ if δ∩{f,¬f} �= ∅; otherwise, f is unspecified
in δ. f is specified in a set of p-states Δ if it is specified in every γ ∈ Δ. f is foreign
in a set of p-states Δ if it is unspecified in every γ ∈ Δ. For a fluent f , f denotes ¬f
and ¬f = f . For a set of literals L, by L we denote the set {l | l ∈ L}.

In progression, a plan is executed starting from an initial structure. We need
to specify a transition function Φ̂ from plans and structures into structures. This is
based on the specification of a transition function Φ from actions and structures into
structures.

Some notation needs to be initially defined so that the transition function can
be specified. For a p-state δ and action a, a is executable in δ if excond(a) ⊆ δ. a is
executable in a p-structure 〈δ,Δ〉 if γ |= excond(a) for every γ ∈ Δ. The effect of a
in δ is defined by

ea(δ) =

{
head(p) p ∈ effects(a) and δ |= condition(p)

∅ ¬∃p ∈ effects(a) s.t. δ |= condition(p)

The set ea(δ) is well-defined because condition(p) and condition(p′) are mutual
exclusive for p �= p′. If δ |= condition(p), we say that p is applicable in δ. Intuitively,
ea(δ) is the set of fluent literals that must be true after the execution of a.

Definition 4 (Result). The result of executing a non-sensing action a in δ

8 International Journal of Software and Informatics, Vol.3, No.1, March 2009

is defined by

Res(a, δ) =

{
(δ \ ea(δ)) ∪ ea(δ) if δ |= excond(a)
⊥ otherwise

The notation ⊥ is used to indicate that the execution of a in δ fails. It is easy to see
that the following property holds.

Property 1. If δ ⊆ δ′, a is executable in δ, and p is an effect of a such that
condition(p) ⊆ δ then Res(a, δ) ⊆ Res(a, δ′).
The transition function over p-structures and actions is defined as follows.

Definition 5 (Transition Function). For an action a and a p-structure
〈δ,Δ〉,

− if a is a non-sensing action and it is executable in 〈δ,Δ〉 then

Φ(a, 〈δ,Δ〉) = 〈Res(a, δ), {Res(a, δ′) | δ′ ∈ Δ}〉 ;

− if a is a sensing action which senses f (i.e. determines(a) = {f}) executable
in 〈δ,Δ〉 and f is either specified or foreign in Δ then

Φ(a, 〈δ,Δ〉) = 〈δ, {δ′ | δ′ ∈ Δ, δ′ ∼{f,¬f} δ, and δ′ |= excond(a)}〉 ;

− otherwise, Φ(a, 〈δ,Δ〉) = ⊥.
Intuitively, the execution of an action in a p-structure results in a p-structure.

For non-sensing actions, the resulting p-structure is obtained by progressing each of
its p-states. On the other hand, for sensing actions, there are two cases. In the first
case, if the sensed fluent is specified in the p-structure, executing the action will result
in a new p-structure, in which the fluent is known to be true or known to be false. In
the second case, the sensed fluent is foreign in the p-structure, then the progression
does not result in any change.1) It is easy to see that Φ is identical to the transition
function defined in Ref.[5] when its domain is restricted to the set of all c-structures.
Following Ref.[5], the function Φ needs to be extended to progress plans.

Definition 6 (Extended Transition Function). Let c be a plan and σ =
〈δ,Δ〉 be a p-structure.

1. if c = [] then Φ̂(c, σ) = σ;
2. if c = a; c1 where a is a non-sensing action and c1 is a plan then Φ̂(c, σ) =

Φ̂(c1,Φ(a, σ));
3. if c = a; [if f then c1 else c2] where a is a sensing action with determines

(a) = f and c1 and c2 are plans then

Φ̂(c, σ) =

{
Φ̂(c1, σ′) if σ′ |= Knows(f)

Φ̂(c2, σ′) if σ′ |= Knows(¬f)

where σ′ = Φ(a, σ).
4. Φ̂(c,⊥) = ⊥.

1) This is because we assume that the progression is done on the p-structures. This will not be

the case if the progression is done on c-structures, which is the case when we progress from initial
c-structures.

Richard Scherl, et al.: State-Based regression with sensing and knowledge 9

Extending the notation, we write

Φ̂(c,Ω) =

{
⊥ if Φ̂(c, σ) = ⊥ for some σ ∈ Ω⋃

σ∈Ω Φ̂(c, σ) otherwise

where c is a plan and Ω is a set of p-structures. We will say that c is executable in Ω
if Φ̂(c,Ω) �= ⊥. Given a planning domain D = 〈F,Ons,Ose,A, I,G〉 a progression
solution is defined as follows:

Definition 7 (Progression Solution). A plan c is a progression solution
for a planning domain D if for every initial c-structure σ0 of D, Φ̂(c, σ0) �= ⊥ and
Φ̂(c, σ0) |= Knows(G).

This definition is illustrated in Fig.1. Intuitively, the planner begins with some
knowledge of the possible ways the world can be. The actual world could be any
one of the possibilities. The various possibilities (a state of the world and a set of
possible states) are represented by the c-structures in Ω0. In the figure, these are the
checkered squares. A plan is a solution, if no matter which of the possibilities is in
fact the actual world, an execution of the plan in that world with the knowledge of the
possible ways the world could be, yields knowledge of the goal. As shown in Figure 1,
the progression of the plan starting with each of the c-structures in Ω0 yields Φ̂(c,Ω0).
Each member of Φ̂(c,Ω0) (the squares filled with dots) must entail Knows(G) for c
to be a progression solution.

Figure 1. Progression solution

Before looking at a larger example, consider the following simple example:

Example 1. The planning domain is D1 = 〈{f, g, h}, {a}, ∅,A1, I, {h}〉, where
A1 defines a single non-sensing action a with two effects

p = {f, g} ⇒ h and q = {f,¬g} ⇒ h

and excond(a) = 	, I = {initially f}, and the goal G = {h}. There are only four
possible initial states

s1 = {f, g, h}
s2 = {f, g,¬h}
s3 = {f,¬g, h}
s4 = {f,¬g,¬h}

10 International Journal of Software and Informatics, Vol.3, No.1, March 2009

and therefore Σ0 = {s1, s2, s3, s4}. We have that

Φ(a, 〈s1,Σ0〉) = 〈s1, {s1, s3}〉
Φ(a, 〈s3,Σ0〉) = 〈s3, {s1, s3}〉
Φ(a, 〈s2,Σ0〉) = 〈s1, {s1, s3}〉
Φ(a, 〈s4,Σ0〉) = 〈s3, {s1, s3}〉

This implies that a is a progression solution for h.

4 Medical Example

A running medical example, similar to that used in other work in this area[24],
is used to illustrate our approach. A patient is ill, but alive. We know that if he is
infected with disease 123, then he is also hydrated. But we do not know whether he
is infected. We do have a stain, which can be used to test for infection with disease
123. If the result of the staining is blue, then the patient is infected. We have a
sensing action to determine whether or not the result of the stain action is blue or
not. We can treat disease 123 with medication, but the problem is that if the patient
is not hydrated, he will die from the medication. So, it is important to construct the
appropriate plan so that the patient is guaranteed not to die.

In this domain (D1), Ons contains the following actions: medicate, and stain.
Additionally, Ose contains inspect. The set F contains Dead, Blue,Infected, and
Hydrated.

The complete set of 16 possible states for D1 are as follows2):

s1 = {¬Dead,¬Infected,¬Blue,¬Hydrated}
s2 = {Dead,¬Infected,¬Blue,¬Hydrated}
s3 = {¬Dead, Infected,¬Blue,¬Hydrated}
s4 = {¬Dead,¬Infected,Blue,¬Hydrated}
s5 = {¬Dead,¬Infected,¬Blue,Hydrated}
s6 = {Dead, Infected,¬Blue,¬Hydrated}
s7 = {¬Dead, Infected,Blue,¬Hydrated}
s8 = {¬Dead,¬Infected,Blue,Hydrated}
s9 = {Dead,¬Infected,Blue,¬Hydrated}
s10 = {Dead,¬Infected,¬Blue,Hydrated}
s11 = {¬Dead, Infected,¬Blue,Hydrated}
s12 = {Dead, Infected,Blue,¬Hydrated}
s13 = {¬Dead, Infected,Blue,Hydrated}
s14 = {Dead,¬Infected,Blue,Hydrated}
s15 = {Dead, Infected,¬Blue,Hydrated}
s16 = {Dead, Infected,Blue,Hydrated}

We have the following axiomatization of the initial state:

2) Note that these are being explicitly listed for expository purposes. The method does not need to
construct the entire state space.

Richard Scherl, et al.: State-Based regression with sensing and knowledge 11

initially ¬Dead ∧ ¬Blue

initially Infected → Hydrated

and the goal is to have the patient not dead and not infected:

Goal :¬Dead ∧ ¬Infected

The following are initial states:

s1 = {¬Dead,¬Infected,¬Blue,¬Hydrated}
s5 = {¬Dead,¬Infected,¬Blue,Hydrated}
s11 = {¬Dead, Infected,¬Blue,Hydrated}

Therefore, the knowledge set that we need to consider is {s1, s5, s11}. The patient is
not dead (¬Dead) and the stain is not blue (¬Blue) in all three states. In one state
the patient is infected (Infected) and hydrated (Hydrated), in another he is not
infected and not hydrated, and in the other he is hydrated and not infected. So, we
have the following three initial c-structures:

〈s1, {s1, s5, s11}〉 〈s5, {s1, s5, s11}〉 〈s11, {s1, s5, s11}〉

Two of the initial states (s1 and s5) are already satisfying the goal. The third one (s11)
does not. Thus, we must perform actions that do not undo the goal requirements in
the first two and changes the third one to a state that satisfies the goal. Additionally,
in the resulting structures, the planning agent must know that the goal holds. The
axiomatization A of the actions are as follows:

• stain: Effect : {{Infected} ⇒ {Blue}}
ExCond : ¬Blue

• medicate: Effect : {{Hydrated} ⇒ {¬Infected},
{¬Hydrated} ⇒ {Dead}}

ExCond :	

• inspect: Effect: ∅
Determines: Blue

ExCond: 	

A plan to accomplish the goal is as follows:

c = [stain; inspect; [if Blue thenmedicate elsenoOp]].

Let

c1 = [inspect; [if Blue thenmedicate elsenoOp]].

The plan ensures that medicate is only applied in the correct state. The idea is that
we want to stain and inspect so we can differentiate the initial states so that we only
medicate in one of them because medicating in the other prevents achievement of the

12 International Journal of Software and Informatics, Vol.3, No.1, March 2009

goal. To see how the plan works, let us consider the step by step progression of each
of the initial c-structures. First consider:

Φ̂(c, 〈s11, {s1, s5, s11}〉) = Φ̂(c1, 〈s13, {s13, s1, s5}〉)
= Φ̂(medicate, 〈s13, {s13}〉)
= 〈s8, {s8}〉
= σ′

Note that σ′ |= Knows(G). Now consider:

Φ̂(c, 〈s1, {s11, s1, s5}〉) = Φ̂(c1, 〈s1, {s13, s1, s5}〉)
= 〈s1, {s1, s5}〉
= σ′′

Note that σ′′ |= Knows(G).
The other initial structure works similarly. So, we have that

Φ̂(c, 〈s1, {s11, s1, s5}〉) = 〈s1, {s1, s5}〉
Φ̂(c, 〈s5, {s11, s1, s5}〉) = 〈s5, {s1, s5}〉
Φ̂(c, 〈s11, {s1, s5, s11}〉) = 〈s8, {s8}〉

Since the goal is satisfied by s1, s5, and s8, we conclude that c is a progression solution
(plan) for the domain D1.

5 Regression

Various formalisms on regression for reasoning about actions have been developed
(e.g. [11, 13, 17, 18]). Regression has also formed the basis for a number of regression-
based planners (e.g.[2, 23]). In these works, regression was designed to ignore actions
that do not directly contribute to the current goal. In other words, they would
consider only “useful” (i.e., those that help achieve the goal) actions in the regression
procedure. But with these restricted forms of regression, there are plans found by
progression based planners that can not be found by a regression based planner. This
can be seen in the following example3) :

Example 2. Consider D2 = 〈{f, h}, {a, b}, ∅,A2, ∅, {h}〉, where A2 is defined
by

excond(a) = excond(b) = 	,
and effects(a) = {{f}⇒{h}} and effects(b) = {{¬f}⇒{h}}.

It is easy to see that both [a; b] and [b; a] are progression solutions for D2.
Now let us try to find the plan [b; a] by regression, following an adaptation of the

formalism in Ref.[2] for D2. In this formalism, only “useful actions” are considered
in the regression process.

Intuitively, we should start with the regression of a in {h}. This will result in
{f}, i.e., to achieve h by means of a, we need to achieve f . As {f} is not satisfied by

3) This example does not imply that the completeness result in Ref.[23] is incorrect since their work
does not consider actions with conditional effects.

Richard Scherl, et al.: State-Based regression with sensing and knowledge 13

the initial condition, another regression step is needed. Because f is not present in
the head of any effect of a or b, neither a nor b will be considered as “useful” for the
goal of achieving f . This implies that [b; a] cannot be found by a regression formalism
considering only “useful” actions in its reasoning. The same argument can be made
for [a; b]. As such, regression formalisms under the restriction of using only “useful”
actions are generally incomplete with respect to the complete semantics.

In this work, we define a regression formalism that is a truly reversal of the
progression. Even though our later goal is to use this work in planners (where for
efficiency purposes it may be necessary to restrict regression), our current purpose
(being theoretical in nature) is to establish the equivalence between progression and
regression. We will present our formulation in a series of definitions. We start with
the definition of the regression of a non-sensing action in a p-state, a set of p-states,
and a p-structure. This is followed by the definition of the regression of a sensing
action in a set of p-structures. Finally, we define the extended regression function,
which allows for the regression of conditional plans and can be seen as the counter
part to the extended transition function.

5.1 Regression with non-sensing actions

In defining the regression function, the first question we need to answer is “when
can an action a be regressed in a p-state δ?” Assume that a is a non-sensing action.
Intuitively, the regression of a in δ should result in δ′ such that δ ⊆ Res(a, δ′). From
the definition of the function Res, we know that there are two possibilities: (i) there
exists an effect p of a which is applicable in δ′; or (ii) otherwise none is applicable.
The first case implies that (a) there exists no literal in head(p) such that its negation
belongs to δ; and (b) if a literal l belongs to excond(a)∪condition(p) (l is true in δ′)
and its negation l̄ belongs to δ (l is false in δ) then l̄ should belong to head(p). In the
second case, we have that excond(a) must not be false in δ and for every effect p of a,
its precondition, condition(p), must be false in δ′. The following definition reflects
these conditions (the cases (i) and (ii) correspond to Items 1 and 2, respectively.)

Definition 8 (Regressable). A non-sensing action a is regressable in a p-
state δ if either 1 or 2 holds:

1. there exists some p ∈ effects(a) such that

• head(p) ∩ δ = ∅,
• condition(p) ∩ δ ⊆ head(p), and

• excond(a) ∩ δ ⊆ head(p).

We say that a is regressable via p in δ in this case.
2. excond(a) ∩ δ = ∅ and there exists a p-state δ′ such that δ ∪ excond(a) ⊆ δ′

and for every p ∈ effects(a), condition(p) ∩ δ′ �= ∅.
A non-sensing action a is regressable in a p-structure 〈δ,Δ〉 if it is regressable in
every p-state belonging to Δ.

The next step is to define the result of the regression of an action a in a p-state δ.
Let us denote it with δ′. Clearly, we must have that a is executable in δ′. Furthermore,
if an effect p of a is applicable in δ′ then condition(p) must be satisfied in δ′. In
this case, head(p) need not be present in δ′ since it will be added to Res(a, δ′) (Item

14 International Journal of Software and Informatics, Vol.3, No.1, March 2009

1, Def. 8). On the other hand, if none of the effects of a is applicable in δ′ then for
every p ∈ effects(a), δ′ should contain at least some elements in condition(p) (Item
2, Def. 8). This leads to the following definition.

Definition 9 (Regression (non-sensing) in a P-State). Let a be a non-
sensing action regressable in the p-state δ. Let

r1a(δ) = {Reg(a, p, δ) | p ∈ effects(a) s.t. a is regressable via p in δ}

where Reg(a, p, δ) = (δ\head(p))∪condition(p)∪excond(a); and

r2a(δ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩δ
′

∃γ.[γ ⊆ ⋃
p∈effects(a) condition(p),

δ′ = δ ∪ excond(a) ∪ γ,
δ′ is consistent,

∀p ∈ effects(a).[δ′ ∩ condition(p) �= ∅]]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
We say that ra(δ) = r1a(δ) ∪ r2a(δ) is the set of p-states resulting from the regression
of a in δ.

For simplicity of the presentation, let us introduce a special effect, called NoEf-

fect. We assume that NoEffect ∈ effects(a) for every a and useReg(a,NoEffect,

δ) to refer to a p-state belonging to r2a(δ). It is easy to see that a is regressable in δ

if and only if ra(δ) �= ∅.
Example 3. For domain D2 in Example 2 and δ = {h}, we have that r1a(δ) =

{{f}} and r2a(δ) = {{h,¬f}}.
Lemma 1. If a non-sensing action a is regressable in δ then for each γ ∈ ra(δ)

and γ ⊆ γ′, δ ⊆ Res(a, γ′).
Proof: Consider two cases:

• γ ∈ r1a(δ) we have that γ = (δ \ head(p)) ∪ condition(p) ∪ excond(a) for
some p ∈ effects(a). Thus, a is executable in γ and ea(γ) = head(p) and
Res(a, γ) = (γ \ head(p)) ∪ head(p). This implies that δ ⊆ Res(a, γ) since
substituting for γ we get

Res(a, γ) = ((δ \ head(p)) ∪ condition(p) ∪ excond(a) \ head(p)) ∪ head(p).

This simplifies to

Res(a, γ) = (δ ∪ (condition(p) \head(p))∪ (excond(a) \head(p))∪head(p))

given that head(p) ∩ δ = ∅.
Because γ ⊆ γ′, we have that excond(a) ∪ condition(p) ⊆ γ′. This implies
that Res(a, γ) ⊆ Res(a, γ′), which proves the lemma for this case.

• γ ∈ r2a(δ) we have that Res(a, γ) = γ, Res(a, γ′) = γ′, and so δ ⊆ γ′ by
definition.

Corollary 1. If a non-sensing action a is regressable in δ then ra(δ) �= ∅. For
this reason, this condition can be used as a necessary condition for regressable as well.

Richard Scherl, et al.: State-Based regression with sensing and knowledge 15

Example 4. For domain D1 in Example 1, consider δ = {h}. We have that

r1a(δ) = {{f, g}, {f,¬g}}

and
r2a(δ) = {{h,¬f}, {h,¬f, g}, {h,¬f,¬g}}.

It should be mentioned that ra(δ) might contain some p-states which are superset
of other elements in ra(δ). Due to the fact that if an action a is regressable in a
p-state δ then it is regressable in a p-state δ′ ⊆ δ, the presence of such elements do
not have any impact on the theoretical results presented in this paper. Eliminating
this redundancy will be important in the development of a regression-based planner
and will therefore be one of our future concerns.

We now extend regression to a set of p-states.

Definition 10 (Regression (non-sensing) in a Set of p-States). Let Δ
be a set of p-states and a be a non-sensing action regressable in every δ ∈ Δ. The
regression of a in Δ, denoted by ra(Δ), is given by

ra(Δ) = {Δ′ | (∀δ′ ∈ Δ′.∃δ ∈ Δ s.t. δ′ ∈ ra(δ)) and

(∀δ ∈ Δ.∃δ′ ∈ Δ′ s.t. δ′ ∈ ra(δ))}

The first condition implies that each element in Δ′ must be the result of the regression
of some element in Δ and the second condition makes sure that nothing extra is
introduced into Δ′. If a is not regressable in Δ, we write ra(Δ) = ∅. We are now
ready to define the result of the regression of an action in a p-structure.

Definition 11 (Regression of Non-Sensing Actions). Let a be a non-
sensing action and σ = 〈δ,Δ〉 be in the p-structure. We define

R(a, σ) =

⎧⎪⎨⎪⎩
{〈δ′,Δ′〉 | δ′ ∈ ra(δ), Δ′ ∈ ra(Δ), δ′ ∈ Δ′}

if a is regressable in σ

∅ otherwise

For a set of p-structures Ω,

R(a,Ω) =
⋃

σ∈Ω

R(a, σ)

Remark 2. We consider NoOp as a special non-sensing action and define
R(NoOp, σ) = {σ} for every p-structure σ.

As a simple illustration, consider the following:

Example 5. Continue with the domain D1 in Example 1, let δ = {h}, Δ = {δ},
and σ = 〈δ,Δ〉, we have that ra(Δ) = ra(δ) = {{f, g}, {f,¬g}, {h,¬f}, {h,¬f, g},
{h,¬f,¬g}}. This leads to R(a, σ) = 〈δ′,Δ′〉 where δ′ ∈ ra(δ) and Δ′ ∈ ra(Δ) with
δ′ ∈ Δ′. Some of the members in R(a, σ) are 〈{f, g}, {{f, g}}〉, 〈{f,¬g}, {{f,¬g}}〉,
〈{f, g}, {{f, g}, {f,¬g}}〉, etc.

Lemma 2. Let a be a non-sensing action regressable in the p-structure σ.
Then, for every ω such that R(a, σ) � ω, a is executable in ω and σ � Φ(a, ω).

16 International Journal of Software and Informatics, Vol.3, No.1, March 2009

Proof: Recall that R(a, σ) � ω means that there exists some σ′ ∈ R(a, σ)

such that σ′ � ω. First, we will show that a is executable in σ′ and σ � Φ(a, σ′).
Let σ = 〈δ,Δ〉, σ′ = 〈δ′,Δ′〉, and Φ(a, σ′) = 〈δ′′,Δ′′〉. Lemma 1 implies that δ ⊆
Res(a, δ′) = δ′′. For each γ ∈ Δ, we know that there exists some γ′ ∈ Δ′ such that
γ′ ∈ ra(γ). Thus, we have that γ ⊆ Res(a, γ′) ∈ Δ′′. For each γ′′ ∈ Δ′′ there exists
some γ′ ∈ Δ′ such that γ′′ = Res(a, γ′). Since γ′ ∈ Δ′ there exists some γ ∈ Δ such
that γ′ ∈ ra(γ). Lemma 1 implies that γ ⊆ Res(a, γ′) = γ′′. The three conclusions
imply that σ � Φ(a, σ′).

Now, consider ω. Because σ′ � ω, we have that a is executable in ω. The
definition of the function Res and of � imply that Φ(a, σ′) � Φ(a, ω), which proves
the conclusion of the lemma. �

Corollary 2. Let a be a non-sensing action regressable in the p-structure σ
such that σ |= Knows(ϕ). Then, for each σ′ such that R(a, σ) � σ′, a is executable
in σ′ and Φ(a, σ′) |= Knows(ϕ).

Proof: This follows immediately from Lemma 2. �

5.2 Regression with sensing actions

Now it is necessary to define both regressability and regression for sensing actions.
The main difference between non-sensing actions and sensing actions is that sensing
actions do not change the world while non-sensing actions do. This leads to the
following definition.

Definition 12 (Regressable for Sensing Actions). Let a be a sensing
action which determines f . We say

• a is regressable in a p-state δ if excond(a) ∩ δ = ∅.
• a is regressable in a set of p-states Δ if it is regressable in every δ ∈ Δ and
δ ∼{f,¬f} δ′ for every pair δ, δ′ in Δ.

• a is regressable in a p-structure σ = 〈δ,Δ〉 if it is regressable in Δ.

The first condition guarantees that δ can be extended to a p-state in which a is
executable. The second condition ensures that if a is regressable in Δ then either (i)
Δ |= Knows(f); (ii) Δ |= Knows(¬f); or (iii) f is foreign to Δ. To continue we
need the following notation:

Definition 13. A p-structure σ = 〈δ,Δ〉 agrees with a literal l (written as
σ�l) if for every δ′ ∈ Δ, either l ∈ δ′ or l̄ �∈ δ′.

Definition 14. If σ � l, σ + l denotes the p-structure 〈δ ∪ {l}, {δ′ ∪ {l} | δ′ ∈
Δ}〉; for a set of p-structures Ω, Ω+l = {σ+l | σ ∈ Ω}.

The above definition is extended to a set of fluent literals S in the obvious way.
Note that l is known to be true in the p-structure σ + l. For a set of p-structures Ω
and a formula ϕ, we write Ω |= Knows(ϕ) to indicate that σ |= Knows(ϕ) for each
p-structure σ ∈ Ω.

To define the regression of sensing actions, observe that given a p-structure σ =
〈δ,Δ〉 and a sensing action a, the execution of a in σ will result in σ′ = 〈δ,Δ′〉 with
Δ′ ⊆ Δ and every δ′ ∈ Δ′, δ′ ∼{f,¬f} δ where determines(a) = f . Note that in
the initial set-up of a planning problem, each of the different possible states of the

Richard Scherl, et al.: State-Based regression with sensing and knowledge 17

world become a state s in a c-structure 〈s,Σ〉. The k-set Σ is a set of all the initial
possible states. Therefore progression begins with a set of structures and as sensing
occurs, the k-sets of each of these c-structures are pruned, representing the increase
in knowledge. As regression is intended to reverse the process, it needs to increase
the k-sets. This, however, is done only when we need to regress a sensing action in
a conditional plan. As such, the regression of a sensing action should start with two
set of p-structures, each corresponding to a branch of the plan. Recall that we have
required that sensing actions that sense a fluent f only occur immediately prior to a
conditional construct that branches on f . For a set of p-structures Ω, the set of all
p-states occurring in Ω is denoted by b(Ω) =

⋃
〈γ,Γ〉∈Ω Γ.

Definition 15 (Regression of Sensing Actions). Let a be a sensing ac-
tion which senses f and Ω1 and Ω2 be two set of p-structures such that Ω1 |=
Knows(f) and Ω2 |= Knows(¬f). The result of regression a in Ω1 and Ω2, de-
noted by R(a,Ω1,Ω2), and is defined as follows.

R(a,Ω1,Ω2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈δ,Δ′〉 + excond(a) | ∃〈δ,Δ〉 ∈ Ω1 ∪ Ω2 and

a is regressable in 〈δ,Δ〉
Δ ⊆ Δ′ ⊆ Δ ∪ {γ | γ ∈ b(Ω1 ∪ Ω2) s.t. δ �∼{f,¬f} γ

a is regressable in γ}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Consider the planning problem in which the p-states include a, b, c, and d, where
it is the case that f ∈ a, f ∈ d, ¬f ∈ b, and ¬f ∈ c. Now consider the case
where we are regressing a sensing action that determines f and Ω1 = {〈a, {a, d}〉}
and Ω2 = {〈b, {b, c}〉}. Note that Ω1 |= Knows(f) and Ω2 |= Knows(¬f). We
need to regress to all possible p-structures that would yield the contents of Ω1 and
Ω2 through progression of the sensing action. The sensing action may have been
vacuous, so we need to include the contents of Ω1 and Ω2, along with structures
representing all possible ways to weaken the knowledge found in those structures. So,
the result needs to be 〈a, {a, d}〉, 〈a, {a, d, b}〉, 〈a, {a, d, c}〉, 〈a, {a, d, b, c}〉, 〈b, {b, c}〉,
〈b, {b, c, a}〉, 〈b, {b, c, d}〉, and 〈b, {b, c, a, d}〉. Note that progression of these structures
(and nothing more) through the sensing action that determines f yields precisely the
contents of Ω1 ∪ Ω2.

5.3 Regression over plans

We next extend R to define the regression R̂ on conditional plans.

Definition 16 (Extended Regression Function). Let Ω be a set of p-
structures and c be a plan. We define R(c, ∅) = ∅ for every c and extend the R
function to R̂ as follows:

1. For c = [], R̂([],Ω) = Ω.

2. For c = a; c′ where c′ is a plan and a is a non-sensing action,

R̂(c,Ω) =
⋃

σ∈R̂(c′,Ω)

R(a, σ).

3. For c = a; [if f then c1 else c2] where c1 and c2 are two plans and a is a
sensing action with determines(a) = f , let R1 = R̂(c1,Ω) and R2 = R̂(c2,Ω),

18 International Journal of Software and Informatics, Vol.3, No.1, March 2009

(a) if R1 ∪R2 = ∅ then R̂(c,Ω) = ∅
(b) otherwise, R̂(c,Ω) = R(a, (R1 + f), (R2 + f̄)).

We are now ready to define the notion of regression solution.

Definition 17 (Regression Solution). Let D = 〈F,Ons,Ose,A, I,G〉 be a
planning problem and Ω = {〈G, {G}〉}. A conditional plan c is a regression solution
for D if (i) R̂(c,Ω) �= ∅ and (ii) for every initial c-structure σ, R̂(c,Ω) � σ.

This definition is illustrated in Fig.2. We see that regression begins with the
goal p-structure, 〈G, {G}〉. The process of regression continues, in general increasing
the number of p-structures being regressed. Finally, the regression of the plan c,
terminates and yields the set of p-structures R̂(c,Ω). These are represented by the
circles filled with dots. For the plan c to be a regression solution, it must be the case
that for each initial c-structure σ0 ∈ Ω0 (represented by the checkered squares), there
must be a σ ∈ R̂(c,Ω) such that σ � σ0.

Figure 2. Regression solution

In the following, we will prove the soundness and completeness of our regression
formalism.

5.4 Soundness

Soundness is established through a series of lemmata. Our goal is Lemma 4,
which is illustrated in Fig.3. Given that a plan c is regressable in Ω and ω is a
p-structure such that for some σ′ ∈ R̂(c,Ω), σ′ � ω, we can conclude that the
progression of c starting in ω wil be in the relation σ � Φ̂(c, ω) for some σ ∈ Ω. From
this soundness follows, since anything known in σ (in particular G, the goal) will be
known in Φ̂(c, ω). We first prove this property for a sequence of non-sensing actions,
and then a conditional plan in Lemma 4.

Lemma 3. Let c = a1; . . . ; ak be a sequence of non-sensing actions regressable
in the p-structure σ and σ′ be a p-structure such that R̂(c, σ)�σ′. Then, c is executable
in σ′ and σ � Φ̂(c, σ′).

Richard Scherl, et al.: State-Based regression with sensing and knowledge 19

Figure 3. Illustration of Lemma 4

Proof: By induction on k. The case for k = 1 is Lemma 2. Assume that it is

correct for k − 1. We prove that it holds for k.
Let c′ = a1; . . . ; ak−1. Because R̂(c, σ) � σ′, we know that there exists some ω ∈

R(ak, σ) such that R̂(c′, ω)�σ′. The inductive hypothesis implies that c′ is executable
in σ′ and ω � Φ̂(c′, σ′). By Lemma 2, we have that ak is executable in Φ̂(c′, σ′) and
σ � Φ(ak, Φ̂(c′, σ′)). Thus, c is executable in σ′ and σ � Φ(ak, Φ̂(c′, σ′)) = Φ̂(c, σ′).�

To illustrate regression of a sequence of non-sensing actions through a set of
p-structures, consider the following example:

Example 6. Let’s continue with Example 3, let σG = 〈{h}, {{h}}〉, and Ω =
{σG}. Let δ1 = {f} and δ2 = {¬f, h}. We have that ra({h}) = {δ1, δ2}. It is easy
to verify that rb(δ1) = {f} and rb(δ2) = {¬f}. This allows us to conclude that
R̂([b; a],Ω) �= ∅ and for each initial c-structure σ0 there exists some γ ∈ R̂([b; a],Ω)
such that γ � σ0, i.e., [b; a] is indeed a regression solution for D2.

With the help of Lemma 3, we can prove the soundness of regression over con-
ditional plans. By Definition 1, each conditional plan begins with a sequence of
non-sensing actions and this may be followed by a sensing action and a conditional
statement. This provides a structure for conditional plans and allows for the proof to
be done inductively over the number of if statements, denoted by branch(c), occurring
in the regression solution. Formally, it is branch([]) = 0; branch(c) = 0 + branch(c′)
if c = a; c′ where a is a primitive action and c′ is a conditional plan; and branch(c) =
1 + max{branch(c1), branch(c2)} if c = a; [if f then c1 else c2] where a is a
sensing action and c1 and c2 are conditional plans.

Lemma 4. Let c be a plan regressable in Ω and ω be a p-structure such that
R̂(c,Ω) � ω. Then, c is executable in ω and Ω � Φ̂(c, ω).

Proof: Inductive on branch(c).

• Base: branch(c) = 0 implies that c is a sequence of non-sensing actions. This
follows from Lemma 3.

• Inductive Step: The inductive step requires us to consider the following plan

c = α; a; [if f then c1 else c2]

where α is a sequence of non-sensing actions, a is a sensing action, and c1 and c2
are conditional plans with branch(c1) < branch(c) and branch(c2) < branch(c).

20 International Journal of Software and Informatics, Vol.3, No.1, March 2009

Let R̂(c1,Ω) = Ω1 and R̂(c2,Ω) = Ω2. Let

Ω3 = R(a, (Ω1 + f), (Ω2 + f̄)).

We have that

R̂(c,Ω) = R̂(α,Ω3) = Ωc

Given that R̂(c,Ω)�ω, by Lemma 3, we conclude that α is executable in ω and
there exists some γ ∈ Ω3 such that γ � Φ̂(α, ω). There are two cases:

– γ ∈ Ω1 + f . Thus, there exists some γ′ ∈ Ω1 such that γ′ + f = γ. By
the inductive hypothesis, c1 is executable in γ and there exists some σ ∈ Ω
such that σ � Φ̂(c1, γ′). This, together with γ � Φ̂(α, ω), implies that
σ � Φ̂(c, ω);

– γ ∈ Ω2 + f̄ . The same argument allows us to conclude that there exists
some σ ∈ Ω such that σ � Φ̂(c, ω);

Combining the above two cases, we have the conclusion of the inductive step.

�
This leads to the soundness theorem.

Theorem 1 (Soundness). For every planning problem D = 〈F,Ons,Ose,A,
I,G〉, every regression solution of a planning problem D is a progression solution of
D.

Proof: Let ΩG = {〈G, {G}〉}. Consider a plan c which is a regression solution

for D. Then we know that (i) R̂(c,ΩG) �= ∅ and (ii) for every initial c-structure
σ, there exists some p-structure σ′ in R̂(c,Ω) such that σ′ � σ. Lemma 4 implies
that 〈G, {G}〉 � Φ̂(c, σ). For each such σ, Φ̂(c, σ) |= Knows(G). Therefore c is a
progression solution. �

5.5 Completeness

The next step is to prove completeness of the regression method. It will be helpful
to extend the notation � to two sets of p-structures as follows: We write Ω′�Ω, where
Ω and Ω′ are two sets of p-structures, to indicate that for every σ ∈ Ω there exists a
σ′ ∈ Ω′ such that σ′ � σ.

We prove completeness of the regression method through a series of lemmata,
beginning with sequences of actions and continuing to conditional plans. The final
step is Lemma 10, which is illustrated in Fig.4. It is given that c is a progression
solution for an initial set of c-structures Ω, and Ω′ is a set of p-structures such that
Ω′ � Φ̂(c,Ω). Then, we can conclude that c is regressable in Ω′ and R̂(c,Ω′) � Ω.
Completeness follows from this property since everything known in Ω′ (in particular
G) is also known in Φ̂(c,Ω).

Richard Scherl, et al.: State-Based regression with sensing and knowledge 21

Figure 4. Illustration of Lemma 10

The first lemma relates progression and regression with respect to the execution
of an action in a state.

Lemma 5. Let s be a state and a be a non-sensing action executable in s.
Then, a is regressable in every δ ⊆ Res(a, s) and there exists some δ′ ∈ ra(δ) such
that δ′ ⊆ s.

Proof: The fact that a is executable in s implies that excond(a) ⊆ s. Consider

two cases:

• There exists an effect p of a such that s |= condition(p). This means that
condition(p) ⊆ s and ea(s) = head(p). Thus, Res(a, s) = (s \ head(p)) ∪
head(p). We will show that a is regressable via p in δ. Obviously,

– head(p) ∩ δ = ∅,
– condition(p) ∩ δ ⊆ condition(p) ∩Res(a, s) ⊆ head(p), and

– excond(a) ∩ δ ⊆ excond(a) ∩Res(a, s) ⊆ head(p).

Hence, the first condition in Definition 8 allows us to conclude that a is regress-
able via p in δ and Definition 9 allows us to conclude that Reg(a, p, δ) ∈ r1a(δ)
and Reg(a, p, δ) ⊆ s.

• There exists no effect p of a such that s |= condition(p). Hence, Res(a, s) = s.
It is easy to see that s ∈ r2a(δ).

In both cases, we have that ra(δ) �= ∅ and there exists some δ′ ∈ ra(δ) such that
δ′ ⊆ s. �

The next lemma relates progression and regression with respect to the execution
of an action in a p-structure.

Lemma 6. Let γ = 〈s,Σ〉 be a c-structure and a be a non-sensing action
executable in γ. Then, a is regressable in every γ′ � Φ(a, γ) and there exists some
γ′′ ∈ R(a, γ′) such that γ′′ � γ.

Proof: Assume that γ′ = 〈δ,Δ〉. We have that for each ρ ∈ Δ there exists

some v ∈ Σ such that a is executable in v and ρ ⊆ Res(a, v). Lemma 5 implies that a
is regressable in ρ for every ρ ∈ Δ. This means that a is regressable in Δ, and hence,
in γ′.

22 International Journal of Software and Informatics, Vol.3, No.1, March 2009

Consider a u ∈ Σ, by definition of �, there exists some ρ ∈ Δ such that ρ ⊆
Res(a, u). Again, Lemma 5 implies that there exists some δ′ ∈ ra(ρ) such that δ′ ⊆ u.
This allows us to construct γ′′ ∈ R(a, γ′) such that γ′′ � γ. �

The above result is extended to a sequence of non-sensing actions as follows.

Lemma 7. Let γ = 〈s,Σ〉 be a c-structure and a1; . . . ; ak be a sequence of
non-sensing actions executable in γ. Then, a is regressable in every γ′ � Φ̂(a, γ) and
there exists some γ′′ ∈ R̂(a1; . . . ; ak, γ

′) such that γ′′ � γ.
Proof: Inductive on k. The base case follows from Lemma 6. We now prove

the inductive step. Assume that the lemma is correct for k − 1, k � 1. We prove it
for k. Let γ0 = Φ(a1, γ). We have that a2; . . . ; ak is executable in γ0 and there exists
some θ ∈ R̂(a2; . . . , ak, γ

′), where γ′ = Φ̂(a2; . . . ; ak, γ0), such that θ � γ0. Applying
the base case to γ, γ0, and θ yields the conclusion of the lemma. �

The next lemma proves the above result for sequences of non-sensing actions over
a set of c-structures.

Lemma 8. Let Ω be a set of c-structures and c be a sequence of non-sensing
actions executable in Ω. Let Ω′ be a set of p-structures such that Ω′ � Φ̂(c,Ω). Then,
c is regressable in Ω′ and R̂(c,Ω′) � Ω.

Proof: Consider an arbitrary σ ∈ Ω′, Lemma 7 implies that c is regressable

in σ. Thus, R̂(c,Ω′) �= ∅, i.e., c is regressable in Ω′.
Furthermore, for each γ ∈ Ω, there exists some σ ∈ Ω′ such that σ � Φ̂(c, γ).

Again, Lemma 7 implies that there exists some γ′ ∈ R̂(c, σ) ⊆ R̂(c,Ω′) such that
γ′ � γ. �

To complete the proof of completeness, we need a lemma concerning the relation-
ship between the progression and regression of a sensing action. Before doing so, let
us introduce the notion of a full set of p-structures. We say that a set of p-structures
Ω is full if {δ | ∃〈δ,Δ〉 ∈ Ω} =

⋃
〈δ,Δ〉∈Ω Δ. This means that for each p-state γ

occurring in Ω there exists some p-structure 〈γ,Δ〉 in Ω. It is clear that if an action
a is executable in Ω, and Ω is full, then Φ(a,Ω) is also full. Additionally, we extend
our notation Γ′ � Γ, where Γ and Γ′ are sets of p-structures to indicate that (i) for
each γ ∈ Γ there exists some γ′ ∈ Γ′ such that γ′ ⊆ γ; and (iii) for each γ′ ∈ Γ′ there
exists some γ ∈ Γ such that γ′ ⊆ γ. We now prove the following lemma:

Lemma 9. Let a be a sensing action with determines (a) = f and Ω a full
set of p-structures such that f is not foreign in Ω. Assume that a is executable in Ω and
Φ(a,Ω) = Ωp ∪ Ωn where Ωp |= Knows(f) and Ωn |= Knows(f̄). Let Ω′

p and Ω′
n be

two sets of p-structures such that Ω′
p�Ωp and Ω′

n�Ωn. Then, R(a,Ω′
p+f,Ω′

n+f̄)�Ω.
Proof: Let Ω1 = Ω′

p + f and Ω2 = Ω′
n + f̄ . We have that Ω1 |= Knows(f)

and Ω2 |= Knows(f̄). Thus,

R(a,Ω1,Ω2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈δ,Δ′〉 + excond(a) | ∃〈δ,Δ〉 ∈ Ω1 ∪ Ω2 and

a is regressable in 〈δ,Δ〉
Δ ⊆ Δ′ ⊆ Δ ∪ {γ | γ ∈ b(Ω1 ∪ Ω2) s.t. δ �∼{f,¬f} γ

a is regressable in γ}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
First, we observe that b(Ω1∪Ω2)�b(Ωp∪Ωn) since Ω′

p�Ωp and Ω′
n�Ωn. Now, consider

some σ = 〈δ,Δ〉 ∈ Ω. Without loss of generality, we can assume that δ |= f . We know

Richard Scherl, et al.: State-Based regression with sensing and knowledge 23

that there exists Δp |= Knows(f) and Δn |= Knows(f̄) such that Δ = Δp ∪ Δn.
The fact that a is executable in Ω and Ω is full implies that a is executable in Δ.
Thus, Φ(a, σ) = 〈δ,Δp〉 ∈ Ωp.

Because Ω′
p�Ωp, there exists some σ′ ∈ Ω′

p such that σ′ = 〈δ′,Δ′
p〉 and 〈δ′,Δ′

p〉 �
〈δ,Δp〉. This implies that for every γ′ ∈ Δ′

p there exists some γ ∈ Δp such that γ′ ⊆ γ.
Since a is executable in Ω, for every γ in b(Ω1 ∪ Ω2), γ |= excond(a). Therefore,
since b(Ω1 ∪ Ω2) � b(Ωp ∪ Ωn), for every γ′ in b(Ωp ∪ Ωn), γ′ ∩ excond(a) = ∅. This
means that a is regressable in every γ′ ∈ Δ′

p. Thus, a is regressable in 〈δ′,Δ′
p〉 + f .

Clearly, there exists a θ ∈ R(a,Ω′
p + f,Ω′

n + f̄) such that θ � 〈δ,Δp〉 ∈ Ωp,
namely 〈δ′,Δ′

p〉 + f + excond(a). Note that since a is executable in Ω, the addition
of excond(a) does not affect the � relation. Similarly, since Δp |= f , the addition of
f does not affect the � relation.

Note that σ = 〈δ,Δ〉 = 〈Δp ∪ Δn〉. Let us now consider the set Δn. Since
b(Ω1 ∪ Ω2) � b(Ωp ∪ Ωn), we know that there exsits some set Δ′

n ∈ b(Ω1 ∪ Ω2), such
that Δ′

n � Δn. Note that since a is executable in Δn, the addition of excond(a) to
Δ′

n does not affect the � relation. Similarly, since Δn |= ¬f , the addition of ¬f to
Δ′

n does not affect the � relation. Therefore Δ′
n + excond(a) + ¬f � Δn.

By definition, 〈δ′,Δ′
p+f ∪Δ′

n+¬f〉+excond(a) ∈ R(a,Ω1,Ω2). The arguments
in the paragraph above together with the fact that 〈δ′,Δ′

p〉 � 〈δ,Δp〉, allow us to
conclude that θ′ = 〈δ′,Δ′

p + f ∪ Δ′
n +¬f〉+ excond(a) � 〈δ,Δ〉 = σ. Since we have

shown that for every σ ∈ Ω, there exists some θ′ ∈ R(a,Ω′
p + f,Ω′

n + f̄) such that
θ′ � σ, the lemma is proven. �

The next lemma combines the above results to consider a conditional plan with
an arbitrary level of branching.

Lemma 10. Let Ω be a full set of c-structures and c be a conditional plan
executable in Ω. Let Ω′ be a set of p-structures such that Ω′ � Φ̂(c,Ω). Then, c is
regressable in Ω′ and R̂(c,Ω′) � Ω.

Proof: Inductive on branch(c). Base case follows from Lemma 8. The induc-

tive step requires us to consider the following plan

c = α; a; [if f then c1 else c2]

where α is a sequence of non-sensing actions, a is a sensing action, and c1 and c2 are
conditional plans with branch(c1) < branch(c) and branch(c2) < branch(c).

Let c′ = α; a and d = a; [if f then c1 else c2].
Since c is executable in Ω, c′ must be executable in each c-structure in Ω. Let

Ω∗ = Φ̂(c′,Ω). We know that for each σ∗ ∈ Ω∗ either σ∗ |= Knows(f) or σ∗ |=
Knows(f̄). Group the σ∗ ∈ Ω∗ into two groups Ωp and Ωn such that Ωp |= Knows(f)
and Ωn |= Knows(f̄), and Ω∗ = Ωn ∪ Ωp.

Clearly, c1 is executable in Ωp and c2 is executable in Ωn. Therefore, there exists
Ω′

p ⊆ Ω′ and Ω′
n ⊆ Ω′ such that Ω′

p � Φ̂(c1,Ωp) and Ω′
n � Φ̂(c2,Ωn). By the inductive

hypothesis, we have that R̂(c1,Ω′
p) �= ∅ and R̂(c2,Ω′

n) �= ∅. Thus, R̂(c1,Ω′) �= ∅ and
R̂(c2,Ω′) �= ∅. Hence by the inductive hypothesis, R̂(c1,Ω′

p)�Ωp and R̂(c2,Ω′
p)�Ωn.

Since c is executable in Ω, α must be executable in each c-structure in Ω. Note
that by assumption Ω is full, and therefore Φ̂(α,Ω) is also full. Then by Lemma 9, it
follows that R(a,Ω′

p+f,Ω
′
n+f̄)�φ(α,Ω). Since R̂(d,Ω′) ⊇ R(a, R̂(c1,Ω′

p), R̂(c2,Ω′
n)),

24 International Journal of Software and Informatics, Vol.3, No.1, March 2009

we conclude that R̂(d,Ω′) � Φ̂(α,Ω). Lemma 8 then allows us to conclude that
R̂(c,Ω′) � Ω. This proves the lemma. �

In the next theorem, we prove the completeness of regression.

Theorem 2 (Completeness). For every planning problem P = 〈F,Ons,

Ose,A, I,G〉, every progression solution of D is a regression solution of D.
Proof: Let Ω0 be the set of initial c-structures and c be a progression solution

of D. Note that by constrution Ω0 is full. We have that Φ̂(c,Ω0) |= Knows(G). Let
ΩG = {〈G, {G}〉}. Lemma 10 indicates that c is regressable in ΩG since ΩG�Φ̂(c,Ω0).
Furthermore, we can conclude that R̂(c,ΩG) � Ω0. Therefore for each σ0 ∈ Ω0, there
exists some γ ∈ R̂(c,ΩG) such that γ � σ0, which proves that c is indeed also a
regression solution. �

5.6 Example continued

We conclude with the continuation of our running example; the medical domain
D1. Let

σG = {¬Dead,¬Infected},
and

c = stain; inspect; [if Blue thenmedicate elsenoOp].

For Ω = {〈σG, {σG}〉}, we want to compute:

R̂(c,Ω)

Let
δ1 = {¬Dead,Hydrated,Blue},
δ2 = {¬Dead,¬Infected,¬Blue}, and

δ3 = {¬Dead, Infected,Hydrated,¬Blue}.
The initial computation is as follows.

• medicate is regressable via the effect p1 = Hydrated ⇒ ¬Infected in G and
is not regressable via the effect p2 = ¬Hydrated ⇒ Dead in G. Furthermore,

r1medicate(σG) = {Reg(medicate, p1, σG)} = {{¬Dead,hydrated}}

and r2medicate(σG) = ∅. This gives us

R(medicate,Ω) = {〈{¬Dead,Hydrated}, {{¬Dead,hydrated}}〉}

• Let c1 = inspect; [if Blue then medicate else NoOp].
We have R(medicate,Ω) + Blue = {〈δ1, {δ1}〉} and R(NoOp,Ω) +¬Blue =
{〈δ2, {δ2}〉}. Then,

R̂(c1,Ω) = R(inspect, {〈δ1, {δ1}〉}, {〈δ2, {δ2}〉})

Therefore, the first step creates the following formula to be regressed further:

R̂([stain],R(inspect, {〈δ1, {δ1}〉}, {〈δ2, {δ2}〉})) (3)

Richard Scherl, et al.: State-Based regression with sensing and knowledge 25

The next step involves regression of the sensing action. We have

R̂(inspect, {〈δ1, {δ1}〉}, {〈δ2, {δ2}〉}) =

{
〈δ1, {δ1}〉, 〈δ2, {δ2}〉,

〈δ1, {δ1, δ2}〉, 〈δ2, {δ1, δ2}〉

}
= Ω1

This follows from the second item in Definition 16. Sentence (3) regresses to (4).

R̂([stain],Ω1) (4)

Now there is one action left. Notice that stain is regressable in both δ1 and δ2.
It is regressable via q = Infected ⇒ Blue in δ1 and via the second condition (Def-
inition 8) in δ2. We have that Reg(stain, q, δ1) = {¬Dead, Infected,Hydrated,

¬blue} = δ3. Thus:

r1stain(δ1) = {δ3} and r2stain(δ1) = ∅

and
r1stain(δ2) = ∅ and r2stain(δ2) = {δ2}.

This gives us

R̂(c,Ω) = {〈δ3, {δ3}〉, 〈δ2, {δ2}〉, 〈δ3, {δ3, δ2}〉, 〈δ2, {δ3, δ2}〉}

So finally sentence (4) regresses to:

R̂([], {〈δ3, {δ3}〉, 〈δ2, {δ2}〉, 〈δ3, {δ3, δ2}〉, 〈δ2, {δ3, δ2}〉 (5)

We now have the following four structures for testing whether we have a regression
solution:

ω1 = 〈δ3, {δ3, δ2}〉
ω2 = 〈δ2, {δ2, δ3}〉
ω3 = 〈δ3, {δ3}〉
ω4 = 〈δ2, {δ2}〉

Since ω1 � 〈s11, {s11, s1, s5}〉, ω2 � 〈s5, {s11, s1, s5}〉, and ω2 � 〈s1, {s11, s1, s5}〉, c is
a regression solution for D.

6 Related Work

In recent years, there has been increasing attention given to the importance of
sensing actions and modeling planning agents with incomplete knowledge[3, 12, 18]. The
approach of Graphplan has been extended to handle knowledge and sensing actions[24].
The situation calculus and the closely related fluent calculus have been extended to
include knowledge and sensing[17, 19, 13, 20]. Additionally, planning methods have been
developed within the situation calculus[5, 4]. A number of agent control languages
with sensing and knowledge as well as various programming language constructs have
been proposed[7,17, 13, 21].

Regression as a method for the verification and construction of plans has a long
history[9, 16, 8, 11]. Within the situation calculus, regression has been used to verify the
correctness of plans with knowledge, sensing, and conditionals[17, 13]. Regression also

26 International Journal of Software and Informatics, Vol.3, No.1, March 2009

forms the basis for the agent programming language GoLog[7, 13]. These approaches
regress formulas of the situation calculus.

Regression over states, on the other hand, has been used in a number of successful
methods within the automated planning area[2]. The language used in this paper is
based upon that developed in Ref.[18]. The latter work proposes a progression method
for such plans and also a number of approximations of knowledge. In Ref.[23], Tuan,
Baral and Son assume the 0-approximation of knowledge and develop a method of
regression for plans and prove it complete with respect to the progression operator.
Here regression works by regressing over states as contrasted with Ref.[17] which uses
regression over formulas.

It should be noted that the 0-approximation of knowledge is not complete. For
example, the medical domain used in this paper could not be formulated with the
0-approximation of knowledge. In this paper, building upon Ref.[23], a regression
method on states is developed for full knowledge. Needless to say, this has to be done
at a cost of greater complexity[1].

Herzig, Lang and Marquis[25] have developed a very general framework for plan-
ning in partially observable domains with knowledge and sensing actions. They repre-
sent sets of states with the strongest possible epistemic atom K(ϕ) that is satisfied by
the set of states. The framework is designed to be compatable with a wide variety of
action formalisms. They propose a method of regression which is defined in terms of
the progression operator. So, regression is not constructive, but rather the regressed
formula needs to be guessed and then proven correct with the progression operator.
They characterize their regression method for non-sensing actions as abductive. Their
regression of sensing actions is similar to that found in Ref.[17] as they are regressing
formulas. But note that the formulas in Ref.[17] are those of a 1’st order language
that explicitly talks of possible worlds and accessibility relations.

In the field of automated planning, Rintanen’s work in Refs.[14, 15] has many
relatively superficial differences with our approach, but upon deeper analysis it can be
seen to be strongly related to our work. It proposes different algorithms for backward
searching for a plan in partially observable domains, i.e., regression algorithms for
planning.

Rintanen does not have a concrete textual representation of plans and actions
as we do here (and in languages such as GoLog and Flux). In his work, plans are
directed acyclic graphs, whose nodes represent belief states, while they are sequences
of actions with if-then constructs in our notation. Sensing actions are not explicitly
mentioned, but are represented through observation classes. Therefore, there is no
notion of sensing actions with preconditions. For example, if a domain has a single
sensing action which determines f , then the state space is divided into two observation
classes; one class consists of all states in which f is true and the other consists of
all states in which f is false. Non-sensing actions are represented by operators with
executability conditions and conditional effects. For example, an operator given by the
pair 〈f, g1∧g2 �¬l〉 represents an action whose executability condition is f and whose
effect is {g1, g2} ⇒ {¬l} in our notation. Rintanen also considers non-deterministic
actions but does not consider sensing actions with preconditions.

In each iteration of his regression algorithm, the set of current belief states is
put through two steps of computation. In the first step, regression is executed over

Richard Scherl, et al.: State-Based regression with sensing and knowledge 27

operators (or non-sensing actions). Given a belief state B, the regression of an oper-
ator o is defined by its strong preimage and is the maximal set of states from which
a state in B is always reached by the execution of o. Rintanen uses a BDD formula
based representation of belief states. Although the formulation is stated in terms of
belief states, Rintanen’s regression is formula based and is similar to the formulation
found in Refs.[17, 18]. He developed algorithms for computing the strong preimages
of a belief state when it (the belief state) is represented as a formula.

The second step in the regression algorithm is done by an operator ⊗ which takes
a set of belief states and creates a new set of belief states. Intuitively, the result of
the operator ⊗ over two belief states B1 and B2 are maximal subsets of B1 ∪B2 from
which either B1 or B2 could be selected based on the observations that can be made.
This is similar to our formulation of regression with sensing actions and appears to
be related to that of Ref.[25] as well. But in his framework, the operator ⊗ needs to
be executed in every iteration of the search algorithm, while in our framework, the
equivalent computation is done only when a regression over a sensing action is made.

Rintannen[14, 15] has impressive results concerning the performance of his ap-
proach in planning. His use of BDD formulas to represent states might yield an
advantage (in general or in certain circumstances) compared to the representation
used in this paper as an implementation technique. On the other hand, our construc-
tive regression method may (in general or in certain circumstances) perform better.
The thesis of Ref.[22] contains some experimental comparisons between the planner
presented in Ref.[14] and the implementation of the state-based regression given in
Ref.[23] which show that state-based regression formulation could be implemented in
a conditional planner competitive with YAK, the planner discussed in Ref.[14].

The question of which method yields a better implementation is a very different
topic from the foundational contribution of this paper. It is something that we regard
as unsettled and is a topic for future research and a different paper. Some preliminary
work on the properties of an implementation based on our approach may be found in
Ref.[22].

The literature survey reveals underlying similarity between the diverse approaches
to the regression of conditional plans with knowledge and sensing. We find the fol-
lowing methods for representing the objects of regression:

• Formulas of 1’st order logic that describe possible worlds and their accessibility
relations[17, 13].

• Modal formulas reduced to a single level of nesting[25].

• BDD formulas[14, 25].

• States[23].

This paper fills out the last method, providing a directly defined state-based regression
approach for full knowledge.

7 Summary and Future Work

This paper develops a constructive state-based regression method for planning
domains with sensing operators and a full representation of the knowledge of the plan-
ning agent. The language includes primitive actions, sensing actions, and conditional

28 International Journal of Software and Informatics, Vol.3, No.1, March 2009

plans. We prove the soundness and completeness of the regression formulation with
respect to the definition of progression and the semantics of a modal logic of knowl-
edge. This work can serve as a basis for future work on regression based planning. It
is in this context where comparisons with related approaches will be most instructive.
Our future work with implementations of our approach will compare its efficiency for
both plan verification and planning with other methods.

Acknowledgements

Chitta Baral and Richard Scherl acknowledge support from DTO’s AQUAINT
program under award number N61339-06-C-0143. Richard acknowledges additional
support from the Knowledge Fusion Center of the Army Research Laboratory under
contract number DAAD-03-2-0034. Chitta acknowledges additional support from
NSF under grant number 0412000 and from ONR-MURI number N00014-07-1-1049.
Son Tran acknowledges support from NSF grants IIS-0812267, EIA-0220590, and
CNS-0454066. We also thank the anonymous reviewers for their helpful suggestions.

References

[1] Baral C, Kreinovich V, Trejo R. Computational complexity of planning and approximate plan-

ning in the presence of incompleteness. Artificial Intelligence, 2000, 122(1-2): 241–267.

[2] Bonet B, Geffner H. Planning as heuristic search. Artificial Intelligence, 2001, 129: 5–33.

[3] Etzioni O, Hanks S, Weld D, Draper D, Lesh N, Williamson M. An approach to planning with

incomplete information. In: Proc. of the Eighth International Conference on Principles of

Knowledge Representation and Reasoning (KR92). 1992. 115–125.

[4] Lakemeyer G. On sensing and off-line interpreting in GOLOG. Logical Foundations for Cognitive

Agents: Contributions in Honor of Ray Reiter, Spr., 1999. 173–189.

[5] Lespérance Y. An approach to the synthesis of plans with perception acts and conditionals. In:

Working Notes of the Canadian Workshop on Distributed AI, 1994.

[6] Levesque H. What is planning in the presence of sensing? In: Proc. of the Thirteenth National

Conference on Artificial Intelligence, 1139–1146, 1996.

[7] Levesque H, Reiter R, Lespérance Y, Lin F, Scherl R. GOLOG: A logic programming language

for dynamic domains. Journal of Logic Programming, 1997, 31: 59–83.

[8] Manna Z, Waldinger R. How to clear a block: A theory of plans. Journal of Automated

Reasoning, 1987, 3: 343–377.

[9] McDermott D. Regression planning. International Journal of Intelligent Systems, 1991, 6: 356–

416.

[10] Nguyen XL, Kambhampati S, Nigenda RS. Planning graph as the basis for deriving heuristics

for plan synthesis by state space and CSP search. Artificial Intelligence, 2002, 135: 73–123.

[11] Pednault E. Toward a Mathematical Theory of Plan Synthesis [Ph.D. Thesis]. Stanford Univer-

sity, 1986.

[12] Pryor L, Collins G. Planning for contingencies: a decision based approach. Journal of AI

Research, 1996.

[13] Reiter R. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynam-

ical Systems. The MIT Press, Cambridge, Massachusetts, 2001.

[14] Rintanen J. Backward plan construction for planning with partial observability. In: Proc. of

the International Conference on Artificial Intelligence Planning and Scheduling (AIPS02). 2002.

173–182.

[15] Rintanen J. Conditional Planning in the discrete belief space. In: Proc. of the 19th International

Joint Conference on Artificial Intelligence. 2005. 1260–1265.

[16] Rosenschein S. Plan synthesis: A logical perspective. In: Proc. of the International Joint

Conference on Artificial Intelligence. 1981. 331–337.

Richard Scherl, et al.: State-Based regression with sensing and knowledge 29

[17] Scherl R, Levesque H. Knowledge, action, and the frame problem. Artificial Intelligence, 2003,

144: 1–39.

[18] Son TC, Baral C. Formalizing sensing actions – a transition function based approach. Artificial

Intelligence, 2001, 125: 19–91.

[19] Thielscher M. Representing the Knowledge of a Robot. In: Proc. of the International Conference

on Principles of Knowledge Representation and Reasoning (KR). 2000. 109–120.

[20] Thielscher M. Inferring Implicit State Knowledge and Plans with Sensing Actions. In: Proc. of

the German Annual Conference on Artificial Intelligence, 2001.

[21] Thielscher M. FLUX: A logic programming method for reasoning agents. Theory and Practice

of Logic Programming, 2005, 5(4-5): 533–565.

[22] Tuan L. Regression in the presence of incomplete information and sensing actions, and its

application to conditional planning [Ph.D. Thesis]. Arizona State University, 2004.

[23] Tuan LC, Baral C, Son TC. A state-based regression formulation for domains with sensing

actions and incomplete information. Logical methods in Computer Science, 2006, 2(4).

[24] Weld D, Anderson C, Smith D. Extending graphplan to handle uncertainty & sensing actions.

In: Proc. of the Fifteenth National Conference on Artificial Intelligence, 1998.

[25] Herzig A, Lang J, Marquis P. Action representation and partially observable planning in epis-

temic logic. In: Proc. of the Eighteenth International Conference on Artificial Intelligence,

2003.

