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LSC, Institute of Systems Science

Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100080, P. R. China

State Key Laboratory of Software Engineering
Wuhan University, Wuhan 430072, P.R. China

Email: jhlu@iss.ac.cn

Abstract— Complex networks have attracted much attention
from various fields of sciences and engineering over the last ten
years. To reveal the dynamical mechanism of synchronization in
complex networks with time delays, a general complex dynamical
network with delayed nodes is introduced. Based on this model,
we further investigate the adaptive feedback synchronization and
obtain several novel criteria for globally exponentially asymptotic
synchronization. In particular, our hypotheses and the proposed
adaptive controllers for network synchronization are very simple
and can be readily applied in practical applications. Finally,
numerical simulations are provided to illustrate the effectiveness
of the proposed synchronization criteria.

I. INTRODUCTION

A complex network refers to a set of nodes connected by
edges that has certain non-trivial topological features that are
not found in simple networks [1]. Such non-trivial features
involve a hierarchical structure, a degree distribution with a
heavy-tail, a high clustering coefficient, a community structure
at different scales, and assortativity or disassortativity among
vertices [2], [3]. Complex networks exist in many natural
and man-made systems. Examples include food webs, neural
networks, cellular and metabolic networks, electrical power
grids, computer networks, technological networks, the World
Wide Web, social networks, etc. [1].

It is well known that time delay inevitably exists in natural
and man-made networks [5]. In much of the literature, time
delays in the couplings (edges) are considered; however, the
time delays in the dynamical nodes [5], which are more
complex, are still relatively unexplored. As a matter of fact,
one can find numerous examples in the real world which are
characterized by delayed differential equations having time
delays in the dynamical nodes [5]. For example, the delayed
logistic differential equation, which has time delay in the
dynamical node, is a representative dynamical model of the
electrochemical intercalations and physiological systems. It
is thus imperative to further investigate complex dynamical
networks with delayed nodes. However, such complex net-
works are still relatively unexplored due to their complexity
and the absence of an appropriate simplification procedure.
Further, the lack of a general approach or tool to study such
kind of complex networks has also obstructed the progress

of development of their analysis. Recently, we developed a
method to deal with such kind of complex networks [6], and
in this paper we further investigate the synchronization of a
general complex dynamical network with delayed nodes.

Synchronization is now widely regarded as a kind of col-
lective behavior which is exhibited in many natural systems
[1], [6], [7]. In essence, synchronization is a form of self-
organization. It has been demonstrated that many real-world
problems have close relationships with network synchroniza-
tion [1], [4]. For example, theoretical and experimental results
show that a mammalian brain not only displays in its storage of
associative memories, but also modulates oscillatory neuronal
synchronization by selective perceive attention.

Recently, synchronization of complex dynamical networks
has been a focus in various fields of science and engineering.
Wu [3] investigated the synchronization of random directed
networks. Lü and Chen [5] studied the synchronization of
time-varying complex dynamical networks. Zhou et al. [6]
studied the adaptive synchronization of an uncertain complex
dynamical network. Sorrentino et al. [7] investigated the
controllability of complex networks with pinning controllers.
However, the important issue of synchronization of complex
dynamical networks with delayed nodes has only been lightly
covered [5]. This paper will further investigate the adaptive
feedback synchronization of complex dynamical networks
with delayed nodes. In particular, we obtain several novel
criteria for globally exponentially asymptotic synchronization.
It should be pointed out that our hypotheses and the proposed
adaptive controllers for network synchronization are very
simple and easy to apply.

This paper is organized as follows. Section II introduces a
general complex dynamical network with delayed nodes and
several useful hypotheses. A set of novel adaptive feedback
synchronization criteria are given in Section III. Section IV
uses two representative examples to show the effectiveness
of the proposed synchronization criteria. Some concluding
remarks are given in Section V.



II. PROBLEM FORMULATION AND PRELIMINARIES

We consider a general complex network consisting of N
delayed dynamical nodes [7]. Each node of the network is an
n-dimensional non-autonomous dynamical system with time
delay, which is described by

ẋi(t) = f(xi(t), xi(t − τ)) +
N∑

j=1

cijAxj(t) + Ui, (1)

where i = 1, 2, . . . , N , xi(t) = (xi1(t), xi2(t), · · · , xin(t))T

∈ Rn are the state variables of node i, τ > 0 is the constant
time delay, and cij are the directed couplings from nodes i to
j. The matrix A = (aij)n×n ∈ Rn×n is the inner connecting
matrix of each node and the matrix C = (cij)N×N ∈ RN×N

is the diffusively coupled matrix of the network. That is,

cii = −
N∑

j=1
 �=i

cij , (2)

where cij ≥ 0 (i �= j) represent the coupling strengths from
nodes i to j. Moreover, Ui ∈ Rn are the controllers designed
for the network.

In the network (1), the outer-coupling matrix C is not
necessarily to be symmetric and the elements cij are not
assumed to be only 0 or 1. Moreover, there is no any constraint
on the inner-coupling matrix A.

Before starting the main results, some necessary definitions
and assumptions are given in the following.

Assumption 1 (A1). For the delayed differential equation

ẋ(t) = f(x(t), x(t − τ)), (3)

where x(t) ∈ Rn, f : Rn × Rn → Rn is a continuous
function, there exists a unique continuous solution for any
initial condition (t0, x0), where x0 is an n-dimensional initial
vector.

Assumption 2 (A2). For the vector function f(x(t), x(t −
τ)), suppose that the uniform Lipschitz condition holds, i.e.,
for any xi(t) = (xi1(t), xi2(t), · · · , xin(t))T and s(t) =
(s1(t), s2(t), · · · , sn(t))T . Then, there exists a positive con-
stant L > 0, such that

‖f(xi(t), xi(t − τ)) − f(s(t), s(t − τ))‖
≤ L[‖xi(t) − s(t)‖ + ‖xi(t − τ) − s(t − τ)‖], (4)

where i = 1, 2, . . . N .

Hereafter, ‖x(t)‖ =
√

x2
1(t) + x2

2(t) + · · · + x2
n(t) and

the spectral norm of matrix A is defined by ‖A‖ =√
λmax(AT A). Assume that s(t) is a solution of the node

system (3) satisfying

ṡ(t) = f(s(t), s(t − τ)) , (5)

where s(t) may be an equilibrium point, a periodic orbit, an
aperiodic orbit, or a chaotic orbit in the phase space.

Definition 1 [2], [4], [5]. Let xi(t, τ ; t0, X0) (1 ≤ i ≤
N) be a solution of the controlled network (1), where X0 =

(x0
1, x0

2, · · · , x0
N ) ∈ Rn×N . Assume that f : Ω × Ω → Rn

and Ui : Ω × · · · × Ω → Rn (1 ≤ i ≤ N) are continuous,
Ω ⊆ Rn. If there is a nonempty subset Γ ⊆ Ω, with x0

i ∈
Γ (1 ≤ i ≤ N), such that xi(t, τ ; t0, X0) ∈ Ω for all
t ≥ t0, 1 ≤ i ≤ N , and

lim
t→∞ ‖xi(t, τ ; t0, X0) − s(t, τ ; t0, x0)‖ = 0, (6)

where 1 ≤ i ≤ N and x0 ∈ Ω, then the controlled network
(1) is said to achieve asymptotical network synchronization
and Γ × · · · × Γ is called the region of synchrony for the
dynamical network (1).

Define error vectors as

ei(t) = xi(t) − s(t) , (7)

where 1 ≤ i ≤ N . According to the controlled network (1)

and notice that
N∑

j=1

cij = 0, the error system is then described

by

ėi(t) = ẋi(t) − ṡ(t)
= f(xi(t), xi(t − τ)) − f(s(t), s(t − τ))

+
N∑

j=1

cijAej(t) + Ui, (8)

where 1 ≤ i ≤ N .

Definition 2. The network (1) is said to be globally ex-
ponentially asymptotical synchronous if there exist constants
M > 0 and α > 0, such that for any initial condition,

‖ei(t)‖ ≤ M exp(−αt), (9)

where i = 1, 2, · · · , N and ei(t) = xi(t) − s(t).

In the following, the main goal is to design appropriate
adaptive controllers Ui and the corresponding updating laws
which make the network (1) globally exponentially asymptot-
ically synchronous.

III. ADAPTIVE FEEDBACK SYNCHRONIZATION OF A

GENERAL DELAYED COMPLEX DYNAMICAL NETWORK

In this section, we will introduce several useful adaptive
feedback synchronization criteria for the complex dynamical
network (1) with delayed nodes.

Theorem 1. Suppose that A1 and A2 hold. Let the con-
trollers be Ui = −diei ( i = 1, 2, . . . , N) with the following
updating laws

ḋi = δi‖ei(t)‖2 exp(µt), (10)

where µ and δi are positive constants. Then, the controlled
network (1) is globally exponentially asymptotically synchro-
nous. Moreover,

‖ei(t)‖ ≤ M exp(−µ

2
t) with M > 0. (11)



Proof: Construct the Lyapunov function candidate as fol-
lows:

V (t) =
1
2

[
N∑

i=1

(eT
i (t)ei(t) exp(µt) + L

∫ t

t−τ

eT
i (θ)ei(θ)

exp(µ(θ + τ))dθ)
]

+
1
2

N∑
i=1

(di − d�
i )

2

δi
. (12)

By using the inequality xT y ≤ |xT y| ≤ ‖x‖‖y‖, along
with Eqs. (8) and (10), we have

V̇ (t) =
N∑

i=1

[eT
i (t)ėi(t) exp(µt) +

µ

2
eT

i (t)ei(t) exp(µt)

+
L

2
(eT

i (t)ei(t) exp(µτ) − eT
i (t − τ)ei(t − τ))

∗ exp(µt)] +
N∑

i=1

1
δi

(di − d�
i )ḋi

≤
N∑

i=1

{‖ei(t)‖[L(‖ei(t)‖ + ‖ei(t − τ)‖)

+
N∑

j=1

|cij |‖A‖‖ej(t)‖] + µ

2
‖ei(t)‖2

+
L

2
(‖ei(t)‖2 exp(µτ) − ‖ei(t − τ)‖2)

−d�
i ‖ei(t)‖2} exp(µt). (13)

Denote ci = max
1≤k≤N

|cik| (i = 1, 2, . . . , N), and take account

into the fact 2ab ≤ a2 + b2, we further have

V̇ (t) ≤
N∑

i=1

[L‖ei(t)‖2 +
L

2
(‖ei(t)‖2 + ‖ei(t − τ)‖2)

+‖A‖ci

N∑
j=1

‖ei(t)‖‖ej(t)‖ − L

2
‖ei(t − τ)‖2

+(
µ

2
+

L

2
exp(µτ) − d�

i )‖ei(t)‖2] exp(µt)

≤
N∑

i=1

{[ 3
2
L +

µ

2
− d�

i +
L

2
exp(µτ) +

N‖A‖ci

2

+
‖A‖
2

N∑
j=1

cj ] · ‖ei(t)‖2 exp(µt)} (14)

Select suitable constants d�
i (i = 1, 2, . . .N) satisfying

3
2L + µ

2 − d�
i + L

2 exp(µτ) + N‖A‖ci

2 + ‖A‖
2

N∑
j=1

cj < 0.

(15)
Then, we have V̇ (t) ≤ 0. It follows that V (t) ≤ V (0) for
any t ≥ 0.

Using the Lyapunov function (12), we have

1
2‖ei(t)‖2 exp(µt) = 1

2eT
i (t)ei(t) exp(µt)

≤ V (t) ≤ V (0) .
(16)

Therefore, we obtain

‖ei(t)‖ ≤ M exp(−µ

2
t) with M =

√
2V (0) > 0. (17)

Thus, lim
t→∞ ‖ei(t)‖ = 0. That is, the controlled network (1)

is globally exponentially asymptotically synchronous.

Theorem 2. Suppose that A1 and A2 hold. Let the con-
trollers be Ui = −diei ( i = 1, 2, . . . N) with the following
updating laws

ḋi = δi‖ei(t)‖ exp(µt), (18)

where µ and δi are positive constants, then the controlled net-
work (1) is globally exponentially asymptotically synchronous.
Furthermore,

‖ei(t)‖ ≤ M exp(−µt) with M > 0. (19)

Proof: Construct the Lyapunov function candidate as fol-
lows:

V (t)=
N∑

i=1

[ ‖ei(t)‖ exp(µt)

+L

∫ t

t−τ

‖ei(θ)‖ exp(µ(θ + τ))dθ]

+
1
2

N∑
i=1

(di − d�
i )

2

δi
. (20)

Since ‖ei(t)‖′ = eT
i (t)ėi(t)
‖ei(t)‖ , the Dini derivative of V (t) with

respect to time t along the trajectories of (8) is then given by

V̇ (t) =
N∑

i=1

[
eT

i (t)ėi(t)
‖ei(t)‖ exp(µt) + µ‖ei(t)‖ exp(µt)

+L(‖ei(t)‖ exp(µτ) − ‖ei(t − τ)‖) exp(µt)]

+
N∑

i=1

1
δi

(di − d�
i )ḋi

≤
N∑

i=1

[L + µ − d�
i + L exp(µτ)

+‖A‖
N∑

j=1

cj ] · ‖ei(t)‖ exp(µt). (21)

Now, choose suitable constants d�
i (i = 1, 2, . . . N) satis-

fying

L + µ − d�
i + L exp(µτ) + ‖A‖

N∑
j=1

cj < 0 . (22)

Therefore, V̇ (t) ≤ 0. Similar to the proof of Theorem 1, we
have

‖ei(t)‖ ≤ M exp(−µt) with M =
√

2V (0) > 0. (23)

Thus, lim
t→∞ ‖ei(t)‖ = 0. That is, the controlled network (1)

is globally exponentially asymptotically synchronous.
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Fig. 1. Solution s(t) of the delayed differential equations (24) with initial
values vector [−10 2 − 3]T .

IV. EXAMPLES

In the foregoing section, Theorems 1 and 2 essentially
provide the criteria for global exponential asymptotic synchro-
nization. In this section, we use two representative examples
to illustrate how these theorems can be applied to achieve
synchronization in complex networks with delayed nodes.

Example 1: We first consider a simple network with 50
nodes and time delay τ = 1. The delayed dynamical equation
of each node is described by


ẋi1(t) = a(xi2(t) − xi1(t))
ẋi2(t) = cxi1(t) − xi1(t)xi3(t − 1) − xi2(t)
ẋi3(t) = xi1(t)xi2(t − 1) − bxi3(t − 1)

(24)

where i = 1, 2, . . . 50, a = 10, b = 1.3 and c = −28.
For the initial vector value x0 = (−10, 2, −3)T ,

the solution of system (24) is denoted by s(t) =
(s1(t), s2(t), s3(t))T , which is shown in Fig. 1.

Here, we assume that these nodes are globally connected
with weighted edges. For convenience, select cij = 0.1 (i �=
j). The coupling configuration matrix is thus given by

C =




−4.9 0.1 0.1 · · · 0.1
0.1 −4.9 0.1 · · · 0.1

...
...

...
...

...
0.1 0.1 · · · −4.9 0.1
0.1 0.1 · · · 0.1 −4.9


 .

Assume that the inner matrix A = I3 and the Lipchitz
constant L = 46.14. Obviously, assumptions A1 and A2 hold.

If d∗i (i = 1, 2, . . . , 50) are large enough, according to
Theorems 1 and 2, then the inequalities (15) and (22) hold.
Let δi = 0.1 ∗ i (i = 1, 2, . . . , 50). Figures 2 and 3
show the synchronization errors of ei1(t), ei2(t), ei3(t) under
the updating laws (10) and (18), respectively. Clearly, all
synchronization errors are rapidly converging to zero.

Example 2: Next we consider a more complex node sys-
tem that exhibits chaotic behavior. Specifically, we examine
the logistic delay differential equation that characterizes the
nonlinear dynamics of the electrochemical intercalations and
physiological systems [5]. The logistic delay differential equa-
tion of each node is given by [5]

ẋi(t) = −αxi(t) + rxi(t − τ)(1 − xi(t − τ)) (25)
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Fig. 2. Synchronization errors ei1, ei2, ei3 (i = 1, 2, . . . , 50) under
updating law (10).
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Fig. 3. Synchronization errors ei1, ei2, ei3 (i = 1, 2, . . . , 50) under
updating law (18).

where i = 1, 2, . . . 50. When α = 26, τ = 0.5 and r =
−53, system (25) is chaotic, as shown in Fig. 4, where the
initial value x0 = 1.

The coupling configuration matrix C and the constants
δi (i = 1, 2, . . . , 50) are as given in the earlier example. The
synchronization errors ei(t) (i = 1, 2, . . . , 50) of the delayed
logistic network under the updating laws (10) and (18) are
shown in Figs. 5 (a) and (b), respectively. All synchronization
errors rapidly converge to zero.

V. CONCLUSION

A general complex dynamical network with delayed nodes
has been studied in this paper. Such a network represents
a realistic form of networks which has not been thoroughly
addressed previously. Specifically, by constructing appropriate
Lyapunov functions, several novel adaptive feedback synchro-
nization criteria are derived. These criteria are very useful for
understanding the mechanism of synchronization in complex
networks with time delayed nodes. Moreover, the hypotheses
and the resulting adaptive controllers for achieving network
synchronization are expressed in simple forms that can be
readily applied in practical situations. Finally, numerical sim-
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Fig. 4. Solution s(t) of the delayed logistic differential equation (25) with
initial value x0 = 1.
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Fig. 5. Synchronization errors ei(t) (i = 1, 2, . . . , 50) of the delayed
logistic network with adaptive feedback controllers under (a) updating law
(10); and (b) updating law (18).

ulations have been presented to demonstrate the effectiveness
of the proposed synchronization criteria.
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[5] J. Lü and G. Chen, “A time-varying complex dynamical network model
and its controlled synchronization criteria,” IEEE Trans. Autom. Control,
vol. 50, no. 6, pp. 841-846, Jun. 2005.

[6] M. Jiang, Y. Shen, J. Jian, and X. Liao, “Stability, bifurcation and a new
chaos in the logistic differential equation with delay,” Phys. Lett. A, vol.
350, no.3-4, pp. 221-227, Feb. 2006.
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