IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO.5, SEPTEMBER/OCTOBER 2003

An Approach for Modeling and
Analysis of Security System Architectures

Yi Deng, Member, IEEE, Jiacun Wang, Senior Member, IEEE,
Jeffrey J.P. Tsai, Fellow, IEEE, and Konstantin Beznosov, Member, IEEE

Abstract—Security system architecture governs the composition of components in security systems and interactions between them. It
plays a central role in the design of software security systems that ensure secure access to distributed resources in networked
environment. In particular, the composition of the systems must consistently assure security policies that it is supposed to enforce.
However, there is currently no rigorous and systematic way to predict and assure such critical properties in security system design. In
this paper, a systematic approach is introduced to address the problem. We present a methodology for modeling security system
architecture and for verifying whether required security constraints are assured by the composition of the components. We introduce
the concept of security constraint patterns, which formally specify the generic form of security policies that all implementations of the
system architecture must enforce. The analysis of the architecture is driven by the propagation of the global security constraints onto
the components in an incremental process. We show that our methodology is both flexible and scalable. It is argued that such a
methodology not only ensures the integrity of critical early design decisions, but also provides a framework to guide correct
implementations of the design. We demonstrate the methodology through a case study in which we model and analyze the architecture
of the Resource Access Decision (RAD) Facility, an OMG standard for application-level authorization service.

Index Terms—Software security, security system architecture, access control, authorization service, formal architectural modeling,
constraint patterns, formal verification, Petri nets, temporal logic.

<+

1099

1 INTRODUCTION

SOFTWARE systems today are increasingly interconnected
and accessed in networked environment. This trend is
greatly accelerated by rapid proliferation of the Internet. As
such, software security has emerged as a foremost concern
for modern information enterprise. How to design highly
dependable security systems that ensure secure access to
distributed software and information is an urgent problem.

Given the magnitude and complexity of distributed
systems and information resources interconnected by the
Internet and/or enterprise networks, the design of security
systems that protect the systems and resources also
becomes an increasingly complex and difficult problem.
Access control, for example, must consistently and reliably
enforce organization-wide security policies across different
applications. Security mechanisms must be efficient enough
to be useful. An attractive security system design must
effectively support system evolution, such as changes in
security policies, user population, and their roles, and
changes in applications. Furthermore, software security

e Y. Deng is with the School of Computer Science, Florida International
University, Miami, FL 33199. E-mail: deng@cs.fiu.edu.

e |. Wang is with Nortel Networks at Richardson, Richardson, TX 75082.
E-mail: jiacwang@nortelnetworks.com.

o |.J.P. Tsai is with the Department of Electrical Engineering and Computer
Science, University of Illinois at Chicago, Chicago, IL 60607-7053.
E-mail: tsai@eecs.uic.edu.

e K. Beznosov is with Concept Five Technologies, 25 Bulington Mall Rd.,
Bulington, MA 07803. E-mail: beznosov@concept5.com.

Manuscript received 12 June 2000; revised 12 Feb. 2001; accepted 14 Feb.
2001.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 112260.

1041-4347/03/$17.00 © 2003 IEEE

needs to be achieved at reasonable cost during the
development, operation, and evolution of the systems.

Security system architecture, which defines the structure
of the system, the interaction and coordination among its
components, plays a key role in security system design to
address the above challenges. Increasingly, security me-
chanisms are designed as self-contained components or
subsystems outside applications in heterogeneous distrib-
uted environment [1], [3], [5], [18], [21], [25], [43]. The
separation of security logic from application logic in design
simplifies the development of both distributed systems and
their security functions and, therefore, makes it easier to
enhance their quality. Equally important, it paves the way
for uniformly applying security mechanisms across (hetero-
geneous) system boundaries, as well as for centralizing
security administration and management in an organiza-
tion, a traditionally time consuming, costly, and error prone
process. Several well-known security system architectures
and models, including those in CORBA [5], [31], E]B [19],
DCE [18], and DCOM, are cornerstones for designing
scalable and flexible security systems in distributed envir-
onment. Application level security system models, e.g.,
those of [3], [15] [21], [22], [33], [43], [44], are expected to
gain increasing acceptance.

Despite the advances, however, how to analyze the
design of security systems to ensure its consistency and
integrity is still a largely open problem. In particular, the
composition of security systems is not only to make
constituent components work together, but also to ensure
that the components as a whole behave consistently and
guarantee certain end-to-end properties. A critical property,
for example, is whether the system consistently assures

Published by the IEEE Computer Society

1100

organization-wide security policies that it is supposed to
enforce.

Currently, there is no rigorous and systematic way in the
literature to predict and assure critical properties in
architectural composition of security systems. In particular,
there is no formal way to describe security system
architecture, no precise and systematic means to specify
required properties that the architectural composition of the
security system must satisfy, and no technique to predict
and verify that the composition of the system satisfies the
properties. Although formal verification of security proto-
cols has received increasing attention in recent years [4], [6],
[8], [9], [24], [26], [27], [37], these techniques are generally
based on abstract computation models and are not con-
cerned with composition or architecture of security systems.
Many of these formal models or techniques are developed
for a single security model and do not scale well.

To address the problems, we introduce in this paper a
systematic and formal methodology to model security
systems architectures and to verify whether required
security constraints are assured by the composition of the
components of the systems. We argue that such an
approach not only helps to ensure the integrity of early
design decisions, but also provides a framework to guide
correct implementations of the security system design. The
result presented in this paper is, to the best of our
knowledge, among the first efforts on systematic composi-
tion and analysis of security system architectures in the
literature.

Our methodology consists of several aspects: First, we
present a structured and flexible way for describing security
system architectures using the Software Architecture Model
(SAM) [40]. Second, we introduce the concept of security
constraint patterns, which provides a generic form to
formally specify security policies that the security system
must enforce. We present a technique to decompose
system-wide constraint patterns onto individual compo-
nents of the system based on the security architecture model
and to verify the consistency between global and compo-
nent constraints. These constraint patterns define what
conditions or properties each component and their compo-
sition must satisfy under the system architecture. Because
the constraints are specified as generic patterns, their
usefulness is not limited by a specific set of security
policies. Third, in concert with the architecture model and
constraint propagation, we present a flexible and scalable
technique to verify whether the security system architecture
satisfies the required security constraints. Last, but not least,
we integrate the above aspects into a systematic and
incremental process of security system architecture model-
ing and verification.

Our methodology follows the following broad steps:

1. We model the security system as a composition of
subsystems or components without considering
internal details of the components.

2. Security constraints are formalized into system-wide
generic constraint pattern(s) which define the secur-
ity function that the system as a whole must enforce.

3. Based on the security architecture model, the
global constraints are decomposed into component

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

constraint patterns that each component must
satisfy. By combining a component constraint
pattern with the interface (ports) of the component
(defined in the architectural model), we can easily
generate a simple component model, which pre-
serves the properties defined by the component
constraints. These generated component models
are often constant in size.

4. These small component models are then plugged
into the overall security architecture. This resultant
architectural model is verified against the system-
wide security constraint patterns using standard
analysis techniques, e.g., reachability analysis. This
verification shows the consistency between global
and component constraint patterns under the secur-
ity system architecture (Step 1). And,

5. Once the consistency between system-wide and
component constraints is verified, these component
constraint patterns serve as the basis for component
design. In particular, a more detailed architectural or
behavior model for each component can be con-
structed and verified against the corresponding
constraint pattern using the same process described
above.

This integrated methodology of modeling and verifica-
tion focuses on the architectural composition of security
systems and is highly flexible and scalable. It is flexible
because any component which could be a composition of
other components can be safely replaced with an alternative
design without reanalysis of the overall system architecture
so long as the replacement has the same interface and
satisfies the component constraint pattern. This feature is
especially useful when we apply different security policies
or models to the same security system architecture. It is
scalable because it allows us to analyze overall architectural
composition without the interference of internal details of
component design. Verification is done separately at
architectural and component levels. This significantly
reduces the complexity. There is no need to compose the
results of analysis (once the consistency between system-
wide and component constraint patterns is verified). The
architectural model and constraint patterns are indepen-
dent of a specific security model or policies. Therefore, our
methodology is general and can be applied to a range of
security systems. The modeling and verification are driven
by propagation of security constraints in a refinement
process that incrementally ensures the consistency and
integrity of security architecture.

The underlying notations used in this paper include Petri
nets [17], [30] and temporal logic [10]. The former is a well-
known operational model well suited for modeling the
control and composition of distributed systems. By contrast,
the latter, a popular descriptive formalism, is best suited for
describing rules and constraints. These two notations are
seamlessly integrated [23], [40] in our methodology. More
details about the notations used are provided in Section 2
and in Appendix B.

We will demonstrate our methodology through a case
study in which we model and analyze the architecture of
the Resource Access Decision (RAD) Facility, a standard for

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

application-level authorization service adopted by the
Object Management Group (OMG).

The rest of the paper is organized as follows: Section 2
will give a more detailed description of our modeling and
analysis framework, notation, and process. An overview of
the RAD architecture is provided in Section 3. In Section 4,
we present a detailed case study of modeling and analysis
of the RAD security architecture. Finally, we conclude the
paper in Section 5.

2 FRAMEWORK FOR SECURITY SYSTEM
ARCHITECTURES

In this section, we overview the technique used in this
paper to model distributed security system architecture and
the constraint-driven process for enforcing and verifying
security constraints in the composition of the architecture.
Additional details about the modeling notations and the
process are further elaborated in Section 4.

2.1 Modeling Technique

The modeling technique and notation used in the paper is
based on the Software Architecture Model (SAM) [39], [40].
An overview of SAM is given below. The formal notation of
SAM is summarized in Appendix B.

Software architecture has emerged as one of most active
subject of R&D from both academia and industry for a good
reason. Having a sound architecture has profound impact
on reliability, scalability, extensibility, and interoperability,
among other quality attributes, of software systems during
their lifecycle. A formal methodology to support architec-
ture level design is both necessary and desirable for two
reasons: First, as the high-level design abstraction, software
architecture proceeds and, logically and structurally,
influences other system products. Ensuring good design,
preventing and detecting errors in architectural descrip-
tions are fundamental to the quality and cost of the systems.
Second, because of its high-level abstraction, software
architecture description is less complex compared to a
detailed design. Thus, application of formal methods is
more likely to succeed.

SAM provides a multiple leveled model and notation for
describing different aspects of architecture level design
such as structure, behavior, and constraints [12], [23], [40].
Its specification model can be characterized from several
dimensions:

1. Structurally, software architecture is specified as
multilayered compositions of components and
connectors, which can be refined and analyzed
individually.

2. The construction and refinement of the architectural
model are driven by system requirements (specified
as architectural constraints) and their propagation.
At each design level, SAM specifies not only the
(operational) composition of system components,
but also the (descriptive) constraints that the com-
ponents and their composition must satisfy. Refine-
ment goes in lockstep with the propagation of the
constraints. SAM provides certain integrity rules
(e.g., structural integrity, constraint consistency, and

1101

refinement consistency) to assure design consistency.
During architectural design, every decision is trace-
able backward to the requirements and, conversely,
every requirement is traceable forward to architec-
tural decisions and designs. Consequently, design
traceability and conformity as defined above is
maintained while avoiding ad hoc, accidental design,
and unjustified efforts.

3. Notation-wise, SAM is integrative and employs both
model-oriented formalism (Petri nets) and property-
oriented formalism (temporal logic). In particular,
SAM provides two levels of modeling notations. The
low (proposition) level SAM model employs (time)
Place-Transition nets and (Real-Time) Computa-
tional Tree Logic ((RT)CTL) for analyzability and
the high level (first-order) SAM model utilizes
Predicate/Transition nets (PrT-nets) [17] and First
Order Temporal Logic [10], [16] for expressiveness.
(The high-level model is used in this paper.)
Software architecture is specified by a set-theoretical
recursive description, where Petri nets are used to
describe components and connectors and temporal
logic to specify architectural constraints. These two
complementary notations are seamlessly integrated
under the SAM framework. We have successfully
applied SAM for the modeling and analysis of
command and control systems [12], [40] and flexible
manufacturing systems [13], [39]. The modeling
framework of SAM is illustrated in Fig. 1.

Horizontally, at each design level, a system model can be

constructed and analyzed compositionally. Vertically,
across design levels, a lower level (interface and constraint
conforming) subarchitecture can be built and analyzed
incrementally and safely plugged into its parent level
architecture without the need for reverifying the entire
model. A SAM specification needs to satisfy the following
consistentcy constraints:

e All architectural constraints must be consistent at
any design level, that is, the satisfaction of one
constraint must not lead to the violation of any other
constraints (constraints consistency),

e The behavior model for a component or subarchitec-
ture at a given level must satisfy the corresponding
architectural constraints imposed on the component
or subarchitecture (behavior conformance).

e A subarchitecture at design level k4 1 must inherit
all the ports associated with its corresponding
component at level k (Fig. 1) (interface consistency).

e A subarchitecture at design level £ 4 1 must conform
to all constraints which its corresponding compo-
nent at level k£ are subject to (Fig. 1) (vertical
consistency).

2.2 Methodology for Security System Architecture
Modeling and Analysis

The SAM model does not dictate a specific method of
system modeling, refinement, and analysis. However, a
well-defined method is essential to guide the process of
modeling and analysis. In this section, we introduce such a
concrete method for security system architecture modeling
and analysis based on the SAM model.

1102

Environmental Constraint
(CI)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Component Constraint
. (C2)

Fig. 1. Modeling framework of SAM.

We introduce the concept of architecture-based security
constraint patterns and use propagation of the constraints to
drive and guide the composition and verification of security
system architecture. The concept of constraints has been
widely used in software design and analysis. Definitions,
purposes, and applications of constraints vary. For exam-
ple, system constraints have been defined in the forms of
assertions, contracts, pre/postconditions, invariants, etc.
[7], [20], [28], [34], [42] to support OO analysis and design.
However, what is common is that they represent certain
conditions or properties that must be satisfied in system
architecturing, design, and implementation. System con-
straints can also be described or specified in different forms,
from informal to formal, ranging from natural languages, to
IDL [29], UML, OCL [42], to formal languages and
notations, e.g., temporal logic [8], [10], [11], [14] and Petri
nets [17], [30]. To enable meaningful, especially automated,
reasoning and analysis, however, a certain degree of
formalism is necessary. To enable formal verification,
rigorously defined mathematical formalism is required.
Although a unifying treatment to the concept and applica-
tion of constraints in software development remains to be
seen, their importance is widely agreed.

In our context, we are more interested in how system-
wide security constraints are assured in architectural
decomposition or refinement. A constraint pattern imposed
upon a security system architecture (or a component of the
security system) is a generic form of the required security
function that the system (or component) must perform and
enforce. It is generic in the sense that it is independent of
specific security models or policies and can be instantiated
when security architecture is applied to the design of a
security system based on specific security models or
policies. An instance of security constraint may be the
specification of security policies of an organization that the
security system is set to enforce. (See Section 4.2 for sample

policies.) Our concept of constraint pattern has two
important implications. 1) Because it is generic, it can be
used to constraint the design of a class of security systems
rather than a specific one or, in this case, to constraint the
composition of a security system architecture which
corresponds to a class of systems. 2) The constraint patterns
serve as the basis to enforce traceability and consistency in
the refinement of the architecture and the basis for verifying
whether the composition of the architecture conforms to the
security requirement that it supposes to enforce. The focus
of this research is not what type or form of security policies
should be used in a given context and how to implement
them in system design [38] or what types of models and
frameworks should be used for composing and designing
software systems [29], [32]. Rather, our focuses in this paper
are modeling techniques, which can be used to adequately
describe security constraints, and methods, which can be
systematically applied to reason and/or verify that security
constraints are assured in system architecturing and design.
For example, one might use the methodology presented in
this paper to model and analyze system architectures based
the reference models of CORBA [29] or RM-ODP [32]. One
such example [3] is given in Section 4. Since our goal is to
verify the conformance of security constraints in system
architecture, our modeling technique is based on the formal
notations of temporal logic and Petri nets.

By incorporating the propagation of the constraint
patterns with the architectural refinement process, we
achieve an incremental process of verification that is both
flexible and scalable. The modeling and verification are
driven by the propagation of security constraints in a
refinement process that incrementally assures the consis-
tency and integrity of the security system architecture. By
introducing a novel technique to ensure the consistency
between an architecture level constraint pattern and its
corresponding component level constraint patterns, we

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

Model of Architectural
Composition of
Security Systems

System-wide

Constraint
Pattens

Component Constraint

Patterns via
Propagation

Consistency Checking
between Global and

Component Constraints

Component Design
and Analysis

Fig. 2. Process of security system architecture modeling and analysis.

show that the verification of the system architecture can be
done separately at architecture and component levels. There
is no need to compose the results of analysis at different
levels, which can be difficult and costly in conventional
compositional analysis. Because of this feature, a compo-
nent architecture and its model can be easily replaced with
alternative designs that conform to the component con-
straint without the need to reanalyze the overall security
architecture.

As shown in Fig. 2, our modeling and analysis process
consists of the following major steps.

Step 1. Construction of top-level security system
architecture model. The purpose of this step is to build
the model for the top-level security system architecture,
which describes the overall organization of the system, as
well as the coordination and synchronization between its
components. Consequently, the internal structure and
behavior for the components are not included in this
model. This model is constructed by decomposing the
system into components and their connections. Component
interfaces represented by input ports and output ports are
defined, as well as control and data flows between the
components.

Step 2. Specify system-wide architectural security
constraint patterns. We use first order temporal logic to
formally represent the system-wide security constraints
imposed on the architectural model created in the previous
step. These constraint patterns are specified using only the
interface (ports) of the components. The importance of
formalizing these original security constraint patterns is
twofold: First, the system-wide security requirements are
transformed into specific constraint patterns on this
particular architecture, more precisely, constraints imposed
on the subsystems and connections between the subsys-
tems. Second, by formalizing requirements in terms of
architectural constraint patterns, it not only removes
ambiguity in the description, but also makes it easier to
detect possible inconsistency or conflict between different
(competing) requirements.

Step 3. Decompose system-wide security constraint
patterns to components. In this step, we decompose the
system-wide security constraint patterns to a set of inter-
mediate constraint patterns imposed on the components to

1103

guide component design. The constraint pattern defined on a
given component specifies the function of that component in
terms of its contribution toward the satisfaction of the system-
wide constraints under the given architecture. Because the
original constraint patterns allow many possibilities for the
intermediate constraint patterns, the task of propagating the
system-wide constraint patterns on the components requires
us to carefully examine and explore the boundary between
the components. This is because the propagation of the
system-wide constraints to the components effectively parti-
tions the system-wide function to individual component and
determines the interface and protocols of interaction between
them.

Step 4. Verify consistency between system-wide and
component constraint patterns. When the decomposition is
done, we need to verify whether the intermediate constraint
patterns are consistent with the system-wide security
constraint, that is, the component constraints collectively
satisfy the system-wide constraints under the given archi-
tecture model. Only after these intermediate constraint
patterns have been proven to be consistent with the
system-wide constraints can it be meaningful to design the
components against these intermediate constraint patterns.
This verification is facilitated by the facts that 1) the
component constraints have similar forms to the system-
wide constraints because the former is generated from the
latter and 2) the component constraints are connected
together by the structure of the architecture model. There-
fore, this verification is unlikely to be deterred by the
complexity of proving consistency between two arbitrary
sets of temporal formulas. A novel verification technique is
described in Section 4.

Step 5. Incremental design and verification of the
components. The completion of Step 4 has two important
implications: 1) The component constraint patterns can be
trusted as the basis for component design and 2) if every
component design conforms to its component constraints,
the resulting system architecture with the inclusion of the
component designs will automatically satisfy the system-
wide constraint pattern. This is an important conclusion
because, as shown in Section 4, it significantly reduces the
complexity of analysis. The component design can be used
either to construct an operational model of the component
conforming to its constraints or to further decompose the
component into a subarchitecture. In the first case,
component verification can be done using any standard
techniques. In the second case, we iterate the above steps,
resulting in an incremental architectural composition and
analysis process. If necessary, more than one subarchitec-
ture that conforms to the interface and constraints of a
component can be developed and plugged into the security
system architecture model to evaluate different design
alternatives.

3 OVERVIEW OF THE RESOURCE ACCESS DECISION
(RAD) FACILITY ARCHITECTURE

We use the Resource Access Decision (RAD) Facility [3]

specification, a standard for application authorization

service adopted by the Object Management Group

(OMGQG), as an example to demonstrate our modeling and

1104

. ADPD ica
Request .

4. Reply to application
request .

Fig. 3. High-level view of RAD role in authorization decision.

analysis methodology. An overview of the RAD architec-
ture is provided in this section.

The RAD Facility is designed to provide a flexible and
general way to handle application-level access control, in
particular authorization decisions, in distributed systems.
The RAD design is motivated by the fact that the complex-
ity of access control in such application domains as
healthcare requires policies that are more sophisticated
and of finer granularity than commonly available security
mechanisms. The RAD specification provides a security
system architecture that encapsulates authorization logic in
an authorization service external to the application and is
independent of specific security models and policies. Such a
security system architecture not only significantly simplifies
both application and security system development, but also
allows organizations to uniformly manage and enforce their
security policies.

To access a protected resource under the RAD architec-
ture, an application requests an authorization decision from
a RAD compliant authorization service and enforces the
decision. The flow of interactions between application
client, application system, and an instance of authorization
service is depicted in Fig. 3. The sequence of the interaction
is as follows:

1. A client of the application system invokes an
operation on the application.

2. While processing the invocation, the application
requires an authorization decision from the author-
ization service.

3. The authorization service makes an authorization
decision, which is returned to the application.

4. The application, after receiving an authorization
decision, enforces it. If access is granted by the
authorization service, the application returns ex-
pected results of the invocation. Otherwise, it either
returns partial results or raises an exception.

A RAD service is composed of the following components
(Fig. 4): The AccessDecisionObject (ADO) serves as the

Middleware

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Access Decision
Object

(ADO)

request .

3. Reply to authorization™

request .

interface to RAD clients and coordinates the interactions
between other RAD components. Zero or more Policy-
Evaluators (PEs) perform evaluation decisions based on
certain access control policies that govern the access to
protected resource. The DecisionCombinator (DC) combines
the results of the evaluations made by potentially multiple
PEs into a final authorization decision by applying certain
combination policies. The PolicyEvaluatorLocator (PEL), for a
given access request to a protected resource, keeps track of
and provides references to a DC and, potentially, several
PEs which are collectively responsible for making the
authorization decision to the request. The DynamicAttribu-
teService (DAS) collects and provides dynamic attributes
about the client in the context of the intended access
operation on the given resource associated with the
provided resource name.

Fig. 4 shows interactions among components of author-
ization service. They are outlined below and readers are
referred to [3] for more details about the RAD architecture:

1. The authorization service receives a request via the
ADO interface.

2. The ADO obtains object references to those PEs
associated with the resource name in question and
an object reference for the responsible DC.

3. The ADO obtains dynamic attributes of the principal
(client) in the context of the resource name and the
intended access operation.

4. The ADO delegates an instance of DC for polling the
PEs (selected in Step 2).

5. The DC obtains decisions from PEs and combines
them according to its combination policy.

6. The decision is forwarded to the ADO, which in turn
returns the decision to the application.

4 ARCHITECTURAL MODELING AND ANALYSIS OF
RAD—A CASE STuDY

In this section, we discuss the modeling and analysis of the
Resource Access Decision (RAD) architecture based on the

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

1105

an Application
System

1: access_allowed(ResourceName, Operation, AttributeList)

a Locator : Poli
Evaluatorlocator

<
2: get_policy_decison_evaluatorgResourceName)

an Access Decision
Object : AccessDecison

=N

4: combine_decisons(ResourceName, Operation, AttributeList, PolicyEvaluatorlist)

3: get_dynamic_attributes(AnributéList, ResourceName, Operation)

an Attribute Service :

DynamicAttiibuteService

Fig. 4. RAD interaction diagram.

framework and process discussed in Section 2. Our case
study begins with building the high-level architecture
model of RAD, based on which system-wide security
constraint patterns are formulated and specified. Based on
the architecture model, we propagate system-wide
constraint patterns to the system’s constituent components.
After the consistency between the system-wide constraint
patterns and component constraint patterns is verified, we
develop individual component model against its compo-
nent constraint patterns. We will also show how our
modeling and analysis process supports dynamic change
of security policies under the RAD architecture.

4.1 High-Level Architecture Model of RAD

The high-level architecture model describes the structural
composition of a system, intercomponent connections,
component interfaces, and overall control flow. We divide
the RAD components shown in Fig. 4 into two groups. The
first group includes ADO, PEL, DAS, and the second DC
and PEs. The components in the first group are generally
independent of specific security policies, while the design of
the second group is affected by specific policies and thus
more dynamic in this sense. We model ADO, PEL, and DAS
as defined in the RAD architecture while considering DC
and PEs as one component in the top-level model to be
decomposed later. This makes it easier for us to plug in
different DC and PE designs in case of different security
policies. We also include an application system component
in the model, which acts as the environment for the RAD
model. The resultant model is shown in Fig. 5 with its
variables explained in Table 2. We use Petri nets to
represent the interface of components and their connec-
tions, where communication ports of the components are
represented by places (half circles) on the border of the
components. Interactions between the components are
modeled by simple Petri nets.

a Combinator :
DecisionCombinator

5:* evaluate(FiesourceN;me,”Operation, AttributeList)

an Evaluator :
PolicyEvaluator

The control flow between the components is guided by
the following constraints:

O (PO — $P1); (when a user issues an access request, the
AS will pass the request to the RAD service).

O (P2 — ¢P5); (when ADO is invoked by AS, it will
invoke PEL and DAS).

O(P7— $P9); (when PEL is invoked, it will return
references for DC and PEs).

O (P8 — {P10); (when DAS is invoked, it will return
security attributes).

O0(P11 — $P12); (when DC&PEs is invoked, it will
return access control decision).

O (P6 — ¢P3). (when ADO gets decision from DC&PEs,
it will return the decision to AS).

These constraints, combined with the structural connec-
tions between the components (Fig. 5), lead to a basic
system-wide property reachability that needs to be guar-
anteed represented by the following logic formula:

O (PO — PA4). (1)

It says that, when a client requests an access, it is
guaranteed to receive a response from the RAD.

Two observations can be made here. First, no internal
details about the components are revealed at this step.
Second, even though flow relations between the compo-
nents are specified, the precise boundaries between the
components are not defined until constraint patterns
associated with the components are defined.

4.2 Architecture Constraint Patterns and Their
Consistency Verification

In this section, we first formally specify the system-wide
security constraints. We then define intermediate compo-
nent constraints to guide the design of components. Finally,
we verify the consistency between the system-wide con-
straints and intermediate component constraints. This is an
important step to assure the security requirements during
system design.

1106

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

P9
P7 PEL <rel_DC,
F PE> _qa da, op,
<sa, op, res> '<sa, op, res> <sa, op, res> ;:El;eliizc’ P11
P1) P2 P5 = 1) DC&PES
AS ADO
P4C <d> I <d> (P <sa, op, res> D DAS
a T2 Q P8 P10 Pi2
PO <usr, op, res> P6
<d> Tdy, <d>
I‘

Reachability constraints:

(PO — OP1), O(P2 — OP5), O(P7 —OP9), P8 — OP10), (P11 — OP12),

O(P6 — OP3), (PO — P4)

Fig. 5. Top-level architecture composition of RAD.

4.2.1 Sample Security Policies

For the purpose of illustration, we consider a set of
simplified but typical access control policies in the
healthcare domain, which arguably has one of most
complex security requirements. Consider a hospital infor-
mation enterprise consisting of many application systems.
They are used for registration, billing, collecting results of
laboratory tests and transcribed X-ray images, as well as for
storing all other clinical information about patients includ-
ing records of their visits to the hospital (for out-patients)
and their stay overnight (for in-patients).

Hospital employees involved in the care process are
called caregivers. A caregiver accesses many of those
clinical, laboratory, transcription, and financial systems
either directly with specialized client software or via
general-purpose application programs. Such programs
interact with several of application servers in order to
provide caregivers with information needed for patient
diagnosis and treatment.

Let us assume that the hospital adopts the policies listed
in Table 3 to control access to patients’ medical records.

4.2.2 System-Wide Security Constraint Patterns

As discussed in Section 2, our approach of security
system architecture composition and analysis is driven by
satisfaction of system-wide security constraints to assure
required access control policies in the composition of the
architecture. Since the most important end-to-end prop-
erty of RAD is the assurance of security policies, the
construction of the behavioral model starts with the
formulation of a generic form of access control policies,
which serves as the pattern of architectural constraints for
the RAD design.

The system-wide constraints are defined on ports PO
and P3 (Fig. 5), which, when marked, denote the input
request and output decision of the RAD, respectively.
Our study shows that any security policy is composed of
three entities: 1) a subject, which issues the access request
on behalf of a client, 2) a resource name, representing the
protected resource, on which an operation is to be
performed, and 3) the name of the operation. To formally
describe the polices, we define a normal form, op(sb, res),

to represent that subject sb can perform operation op on
the resource res. For example, Policies (P1.1) and (P1.2) of
Table 3 can be described as:

(R1.1)
(R1.2)
(R1.2.1) modify (registration clerk, patient’s name),
(R1.2.2) modify (registration clerk, demographic
information).

read (caregiver, patient’s name).

This way, the given policies in Table 1 form a set
PL = {opi(sbi,res;),i =1,2,...,n}, where

sb; € {"caregiver,” "registration clerk, " “nurse, ”
“technician, ” “assistant physician, ” “physician, ”
“psychiatrist”}.
op; € {"read, ” “modify, "} and
res; € {"PN,” "DD,” "CDD, ” “"CRR, " "CSR,” "CRT,”
"CST,” "PRR, " "PSR,” "PRT,” "PMI"}.

TABLE 1
Legends for Fig. 5

Port (Place)
PO
P1
P2
P3
P4
P5
P6
pP7
P8
P9

Type

usrXopxres

Description

User resource access request

User resource access request with static security attribute
ADO invoked

saxopxres

saxopxres
d
d
SAXOPXICS
d

res

Decision to user resource access request

Decision (o user resource access request received by application

Invocation ol functions issued al RAD ADO
Final decision received at RAD ADO

PEL invoked

DAS invoked

References of DC and PEs

SaXOpXres
re[_DCxREF_PE

P10 Dynamic attributes saxdaxopxres

P11 DC&PEs invoked saxdaxopxres
xref DCXREF PE

P12 Final decision reecived by RAD DC d

Transition
11
T2
T3
T4
TS

Description

‘I'ransmit a user’s resource access request to RAD ADO

Transmil the decision (o a user’s request o application

Transmit a user’s request o RAD process
Transmit the decision (o RAD ADO
Invoke DC&PEs

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

TABLE 2
Variables in Fig. 5

1107

TABLE 3
Sample Access Control Polices of a Hospital (Policies 1)

Variable Description No. Description
ust Uscr name P11 Any caregiver can read patient’s name.
sa Static attributes of the user P12 Registration clerk can modify patient name and demographic information.
. . P1.3 Nurse can read patient’s name and demographic information, modily current episode
da Dynamical attributes of the user reac patier emograp N Ny Y P!
demographic information, can read current episode regular records and current episode
op Requested operation regular test results.
P14 Technician can modify current episode regular and scnsitive test results.
res Resource name hd
- P15 Assistant physician, in addition to what a nursc can do, can also rcad all regular records
ref_DC Object reference of a DC of patients.
REF_PE Object reference set of policy cvaluators P16 Physician, in addition (o whal assistant physician can do, also can modily current episode
regular and sensitive records, and read regular and sensitive records and test results from
d Access control decision. d e {*Y", "N’}. *Y’—granted, ‘N’—denied. previous episodes.

(See Table 5 in Appendix A for abbreviations of the
resource names.)

Also, we denote by S(usr,res) the set of subjects
associated with user wusr regarding resource res. By
generalizing the above discussion, the system-wide security
constraint for the RAD architecture can be described as:

V(usr, op, res, d)
O (PO.(usr, op, res) A (3 sb € S(usr,res), op(sb,res) € PL)
— OP3.dA(d="Y"))
A O (PO.(usr,op,res) A (Vsb € S(usr, res), op(sb, res) ¢ PL)
— OP3.dA(d="N").
(2)
This constraint specifies that if there exists a subject in set
S(usr,res) that is allowed by given security policies to
perform operation op on resource res, then the RAD must
grant the access request; otherwise, the RAD must deny the
access request. Note that this formula is independent of
specific policies and provides a general pattern for system-
wide security constraints. This pattern can be instantiated
because the set PL may represent any group of security
policies.

4.2.3 Intermediate Component Constraint Patterns

The assurance of the system-wide security constraint is
achieved through the collaboration of the RAD components.
To guide component design, we introduce a set of
intermediate constraints that specify the requirements for
the components. These intermediate constraints, or compo-
nent constraints, together can be viewed as products of the
decomposition of the system-wide security constraints.
Collectively, the component constraints should satisfy the
system-wide constraint based on the RAD architecture. We
now consider the intermediate constraint patterns for each
of the RAD components:

AS (application system). When the AS issues an access
request on behalf of a user, the AS is required to provide the
static attributes regarding the user (e.g., John is a physician),
which is a parameter used in the authorization decision. Let
the static attributes of user usr be sa(usr). To enforce the
system-wide security policies, we ask that when a user logs
onto the security service system, an authentication service
provide correct static attributes of the user. That is, the ASis

P17 Psychiatrist, in addition to what a physician can do, also can modify mental information.

subject to the following pattern of constraints on its
interface (PO and P1).

O (PO.(usr, op, res) —

O P1.(sa,op,res) A (Pl.sa = sa(usr))). ®)

Notice that AS is not part of RAD. This pattern is a
constraint to the environment of the RAD.
ADO (access decision object). ADO acts as a facade that

provides a single and uniform interface to other interfaces,
which interact with a RAD service. Its responsibility is to
coordinate the execution of other RAD components and
pass the final decision to AS. The intermediate constraint
patterns for this component are defined as:

O (P2.(sa,op,res) — $P5.(sa, op, res) ()
A (P2.(sa,op,res) = P5.(sa,op,res))),

O (P6.d — OP3.d A (P3.d = P6.d)). (5)

Formula (4) requires that, when ADO receives a resource
access request (at port P2), it should forward the request to
PEL and DAS via port P5. Formula (5) requires that, when
ADO receives the final decision regarding a request, it must

forward the decision to the application system via port P6.
PEL (policy evaluatorlocator). When the ADO receives an

authorization decision request, it needs to know which DC
and PEs are applicable to the given resource. Component PEL
shoulders the responsibility. It provides references to a DC
and one or more PEs that are needed to perform the
evaluation of the access request. In fact, there is a multiple-
to-one mapping between resource names and DCs and a
multiple-to-multiple mapping between resource names and
PEs. We denote by ref_DC(res) the object reference of the DC
that is responsible for the evaluation of requests regarding
resource res and denote by REF_PE(res) the set of object
references of the PEs that are responsible for the evaluation of
requests regarding resource res. To enforce the system-wide
policies, we ask the PEL return correct object references of DC
and PEs. So, the component is subject to the following pattern
of constraint:

1108

O (P7.res — OP9.(ref_-DC, REF_PE)
A (P9.ref_-DC = ref_DC(res)) (6)
A (P9.REF_PE = REF_PE(res))).

It specifies when PEL receives a request (at port P7) with a
given resource name (res), it must return a DC’s object
reference and one or more PEs’ object references (at
port P9), where the DC (ref_DC(res)) and the PEs
(REF_PE(res)) are responsible for the evaluation of requests
about the given resource.

DAS (dynamic attributes service). For certain dynamic
policies, which are time or context sensitive (e.g., only an
attending physician can modify a patient’s record), a PE
needs to know the “dynamic attributes” of the user or
principal (e.g., user John is the attending physician for
patient Mary) with respect to the resource to be accessed. A
dynamic attribute is determined at the time an access
request takes place. DAS is responsible for acquiring and
providing the dynamic attributes for the principal in the
context of the intended access operation on the given
resource with the provided resource name. We denote by
da(sa,res) the dynamic attributes regarding sa and res. To
enforce the system-wide security policies, we ask the DAS
to return correct dynamic attributes. Hence, we have the
following pattern of constraint for DAS:

O (P8.(sa,op,res) — {$P10.(sa, da, op, res)
A (P8.(sa,op, res) = P10.(sa, op,res))
A (P10.da = da(sa,res))).

(7)

It indicates when DAS receives a request (at port PS8)
with the static attributes of a user and the name of a
resource that the user is going to access, it must return the
dynamic attributes of the user regarding the resource (at
port P10).

DC&PEs (decision combinator and policy evaluators).
The compound component DC&PEs is responsible for
making an authorization decision for a given resource
access request. As long as it receives correct static attributes,
dynamic attributes, and object references of DC and PEs,
the component must make a decision consistent with the
access control policies. That is, it is subject to the following
pattern of constraints:

Y(sa,da,op,res,ref DC, REF_PE,d),
O (P11.(sa,da,op,res,ref_DC, REF_PE) A (sa = sa(usr))
A (da = da(usr) A (ref-DC =
ref_DC(res) N(REF_PE = REF_PE(res))
A (3 sb € S(sa,da,res), op(sb, res) € PL)
— OP12dA(d="Y"))
ADO (P11.(sa,da, op,res,ref DC, REF_PE) A (sa = sa(usr))
A (da = da(usr) A (ref -DC =
ref_DC(res)) N (REF_PE = REF_PE(res))
A (V sb € S(sa, da,res), op(sb, res)¢(PL)
— OP12.dA (d="N")),

where

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

S(sa,da,res) = S(sa(usr), da(sa),res) =

S(sa(usr),da(sa(usr)),res) = S(usr, res).

9)

This constraint pattern specifies that, if component
DC&PEs receives the correct static attributes (sa), dynamic
attributes (da) of the principal, and set of PEs, the
component must make a decision consistent with the
security policies. That is, if the intended access operation
(op) on the requested resource (res) by the user represented
by the principal is allowed by security policies, the
component must grant the access request; otherwise, it
must deny the request.

Although the above constraint patterns are derived from
the system-wide constraint pattern (2), we cannot be certain
that the corresponding component constraints ((3)-(8)) are
consistent with the system-wide constraints (2) under the
RAD architecture without explicit verification. The consis-
tency between these two sets of constraints is the basis to
assure the consistency of the composition of the architec-
ture. Only after these intermediate constraints have been
proven to be consistent with the system-wide constraint can
it be meaningful to design the RAD components against
these intermediate constraints. In the next section, we
present a novel technique to verify the consistency of these
two sets of constraint patterns.

4.2.4 Verifying Consistency between Constraint
Patterns

With system-wide and component constraint patterns
defined, our next step is to verify the consistency between
them. Generally speaking, verifying the consistency be-
tween two arbitrary sets of first order temporal formulas is
not decidable. However, we have two leverages here. First,
the component constraints are “derived” from the system-
wide constraints. Therefore, they share similar forms and
structures. Second, we have the connectors of the compo-
nent constraints available. This connector is the architectur-
al model described by Fig. 5, which links the component
constraints together. Armed with these two pieces of
information, we introduce a technique to check the
consistency between the two sets of temporal patterns,
which consists of the following steps:

1. Assume C is the set of components in the security
system architecture. From each constraint pattern for
component ¢ € C, we derive a small and constant-
sized PrT-net, which we call the component require-
ment model of c (against the constraint pattern),
denoted as CRM(c). CRM(c) can be constructed by
translating the temporal formula representing the
component constraint into its PrT-net form. Notice
that CRM(c) has the same ports as ¢ because the
formula is defined on the ports, i.e., these ports
constitute the vocabulary of the formula. It is easy to
see that CRM(c) describes the required behavior of ¢
against the constraint pattern.

2. We plug the set of newly created Petri nets
{CRM(c)lc € C} into the security architecture
model (also represented as a Petri net, e.g., Fig. 5),
which results in a complete, i.e., executable, net
model. Let us call this net the constraint model of the
architecture, which represents the model of the

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

1109

<ref_DC,
REF_PE> PEL:
<res>
) P7 PEL P9) —> ref_DC:=ref_DC(res)
REF_PE:=REF_PE(res) <ref _DC,
<res> REF_PE>
' > — >
O(P7.res — ¢ P9.(ref_DC, REF_PE) A (P9.ref_DC = ref_DC(res)) P7 P9

A(P9.REF_PE = REF_PE(res)))
Fig. 6. lllustration of getting the requirement model of component PEL.

component constraint patterns under the system
architecture. This implies that if this Petri net
satisfies the system-wide constraint patterns, then
the component constraint patterns are consistent
with the system-wide patterns based on the
security system architecture.

Verify if the constraint model satisfies the system-
wide constraint patterns. A number of available
techniques, e.g., reachability analysis, can be used
for this verification.

Constructing component requirement models and
architecture constraint model of RAD. Creating a CRM is
to convert each component in the security architecture,
which is currently a black box, to a simple PrT net based on
its component constraints. Notice that each component
constraint given in Section 4.2.3 specifies the relationship
(or mapping) between input token(s) (at the input ports of
the components) and the output token(s) (at the output
ports). We connect the input and output ports with a
transition ¢ and impose that relationship as an assertion to
the transition. The inscription on the arc from the input port
to t has the same structure as the input token and the
inscription on the arc from ¢ to the output port has the same
structure as the output token. The resultant component
requirement model describes component constraints con-
sistent to the interface of the component.

For example, as shown in Fig. 6, component PEL can be
represented by a PrT net that has two places P7 and P9 and
a transition PEL. The assertion imposed on transition PEL

AS:
sa: = sa(usr)

P1

<sa, Op, res> <usr, Op, res>

PEL:
<sa, op, Tes>

P7

T1

<sa, Op, res>

ADO1 T3

P2

<

<d: <d> : <d>| <d>

T2 P3 ADO2

sd, 0p, resil op, Tes>
: {:’10

DAS
da:= da(sa)

is ref_DC :=ref _DC(res) and REF_PE := REF_PE(res),
which comes from the constraint pattern for PEL (6). A set
of general rules which guide the conversion of a component
constraint pattern to a component requirement model are
described in [41].

When every RAD component is converted into its
requirement model, we get a complete PrT net model of
the RAD architecture, as shown in Fig. 7, which describes
the system-wide behavior as defined by the component
constraint patterns based on the RAD architecture model.

Verifying consistency between system-wide and com-
ponent constraint patterns. The consistency verification is
carried out by analyzing whether the execution of the
architecture constraint model shown in Fig. 7 produces
conflicting results against the system-wide constraint
patterns. Standard reachability analysis technique of PrT
nets is used here for the verification [17].

The initial marking is set as such that port P0 contains a
token with attribute < usr, op,res >, while no other places
contain token. We denote initial marking by MO0 =
PO0.(usr, op, res) for simplicity.

e The firing of transition AS at M0 produces marking
M1 = P1.(sa,0p,res), where sa = sa(usr),

e The firing of transition 7'1 at M1 produces marking
M2 = P2.(sa,op,res), where sa = sa(usr),

e The firing of ADOl at M2 produces marking

M3 = P5.(sa,0p, res), where sa = sa(usr),

ref_DC:=ref_DC(res)
REF_PE:=REF_PE(res) P9

DC&PEs:
d:=g(sa,da,op.res,
ref_DC,REF_PE)

<rel_DC,
REF_PE>

< rel_DC,
REF_PH>

<sa, da, op,
res, REF_PE>

<sa, da, op,
res, REF_PE>

<sd, da, <sa, da,

op, rsn>

Fig. 7. Architecture constraint model of RAD.

P12

1110

e The firing of T3 at M3 produces marking
M4 = PT7.resP8.(sa,op,res),
where sa = sa(usr),

e The firing of transition PEL at M4 produces
marking

M5 = P8.(sa,op,res)P9.(ref _DC, REF_PE),
where
sa = sa(usr),ref_DC = ref_DC(res),
and REF_PE = REF_PE(res),

e The firing of transition DAS at M4 produces
marking

M6 = P7.(res)P10.(sa, da, op, res),
where da = da(sa) and sa = sa(usr),

e The firing of transition DAS at M5 produces marking
M7 = P9.(ref _DC, REF_PFE)P10.(sa, da, op,res),
where

sa = sa(usr),da = da(sa), ref_DC = ref _DC(res),
and REF_PE = REF_PE(res),

e The firing of transition PEL at M6 also produces
marking

M7 = P9.(ref_DC, REF_PFE)P10.(sa, da, op, res),
where

sa = sa(usr),da = da(sa),ref _DC = ref _DC((res),
and REF_PE = REF_PE(res),

e The firing of transition 75 at M7 produces marking
M8 = P11.(sa,da,op,res,ref_.DC, REF_PE), where
sa = sa(usr),da = da(sa),ref _DC = ref _DC(res),
and REF_PFE = REF _PE(res).

The relationship d = g(sa,da,op,res, REF) (defined on
transition DC&PEs) is determined by the constraint defined
on component DC&PEs (8). Since, at A/8, the relations

sa = sa(usr),da = da(sa),ref _DC = ref _DC(res),
and REF_PE = REF_PE(res) are guaranteed for any

given (usr, op,res) at PO, so we can rewrite (8) as

V(usr, op, res),
O (PO.(usr, op,res) A (3 sb € S(sa, da,res), op(sb,res) € PL)
— OP12.dA (d="Y"))
A O (PO.(usr, op,res) A (V sb € S(sa,da,res),op(sb,res)¢PL)
— $OP12.d A (d= N))
(10)

Combining (10) and (9) gives

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Y(usr, op, res),
O (PO.(usr, op,res) A (3 sb € S(usr,res), op(sb,res) € PL)
— OP12.dA(d="Y"))
A O (PO.(usr, op,res) A (V sb(S(usr,res), op(sb,res)¢ PL)
— OP12dA (d="N")).
(11)

Notice that, when transition DC&PEs fires and deposits a
token with attribute < d > to place P12, the firings of
transitions 74 and ADO2 will carry a token with the same
attribute < d > to place P3. In other words, we always
have

P3.d = P12.d.
It follows from (11) and (12) that

(12)

Y(usr, op, res),

O (PO.(usr,op,res) A (3 sb € S(usr,res),op(sb,res) € PL)
— OP3.dA(d="Y"))

A DO (PO.(usr,op,res) A (¥ sb € S(usr,res), op(sb,res) ¢ PL)
— OP3.ANA (d="N")).

This is exactly the same formula as the original system-wide
security constraint of the system (2). Hence, we conclude
that the component constraint patterns are consistent with
the system-wide security constraint pattern.

4.3 Component Modeling and Verification
The consistency between the system-wide and component
constraint patterns is important. This is because, once it is
proven, we can proceed with the design of the components
and, as long as the behavior of the components satisfies
their corresponding constraint patterns, the entire architec-
ture is consistent with system-wide constraints. Notice that
the consistency between system-wide and component
constraints is based on the given architecture.

Now that we have shown the constraint consistency for
the RAD architecture, we are ready to consider component
modeling and analysis.

4.3.1 Refinement of Component DC&PEs

The authorization decision for a given resource access request
is made by the chosen Policy Evaluators (PEs) and Decision
Combinator (DC). There may be several PEs involved in
processing a resource access request. The DC collects
decisions from each of the PEs and makes a final decision.
In the high-level architecture model, the component of
DC&PEs is in fact a composition of DC and one or more
PEs. For the moment, we assume one PE with role-based
access control (RBAC) is used, which is sufficient to support
Policies 1 (Section 4.2.1). (Readers are referred to Appendix A
for an overview of RBAC and its application on Policies 1).
Fig. 8 shows the architecture model of DC&PEs, which
supports role-based authorization. In the figure, variable d1
indicates the decision made by the RBAC PE.

Obviously, the composition of the DC and PE is subject
to the constraint of (8). To guide the design of components
DC and PE, we need to further define intermediate
component constraint patterns on them. These component

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

1111

T6
<sa, 0p, 1es> g <sa, op, res> P15
pi1|) PI3 B I D
RBAC
DC PE
P pry Ge———f¢——(ris
<d1> T7 <dl>

P13 (saxopxres) Attributes

P14 (d) Decisions from PE

P15 (saxopxres) Attributes received by RBAC PE
P16 (d) Decision made by RBAC PE

T6 DC invokes RBAC PE

T7 RBAC PE passes decision to DC

Fig. 8. Composition of DC&PE—One PE Case.

constraint patterns together must be consistent with the
composition constraint of (8).

To formulate the constraint pattern for the PE, we
represent the permission assignment relation given in
Table 7 in Appendix A as a set PA such that if role rl is
allowed to perform operation op on a resource named res
according to this table, then we have (rl, op, res) € PA. This
way, we get

PA = {(Psychiatrist, M, AMD),

(Physician, M, CRR), (Physician, M, CSR),
(Physician, R, CST), (Physician, R, PSR),
(Physician, R, PST), , (Care-giver, R, PN)}.

Also, we denote by RES the set of resources names.
Formula (13) describes the behavioral constraint on the PE:

Y(sa,op, res,d),
O (P15.(sa,0p,res) A (res ¢ RES) — OP16.dA (d="U"))
A O (P15.(sa,op,res) A (res € RES)

A (3 rl € RL(sa), (rl,op,res) € PA)

— OP16.dA(d="Y"))
ADO (P15.(sa, op,res) A (res(RES)

A (Vrl € RL(sa), (rl,op,res) ¢ PA)

— OP16.AA (d="N")).

(13)

It says that if the resource named res is not contained in the
permission assignment table, the PE returns “U” (stands for
unknown) to the DC. If the resource is in the permission
table and there is at least one rl in RL(sa) allowed to
perform operation op on the resource, the PE returns “Y”
(stands for yes or granted) to the DC. If no rl in RL(sa) is
permitted for operation op, it returns N (stands for no or
denied) to the DC. Notice that the form of this constraint
pattern is bound to the RBAC access control model because

the PE is a RBAC PE.
Now, we consider the constraint patterns of DC. When

the DC is invoked by ADO, it will first invoke the selected
PEs, collect decisions from all the PEs, and then make the
authorization decision based on certain combination policy.
Suppose that the DC uses the following policy to process
the decision of the RBAC PE:

'Y if dl
‘N, if d1

"Y' or'U;
/N/

(14)

d = f1(d1) = {

Two component constraint patterns are defined for the DC:

O (P11.(sa,0p,res, REF) — {P13.(sa, op, res)

15
A (P11.(sa,op,res) = P13.(sa,op,res))) (15)

V(d1,d),
O(P14dIA((dl="Y'V(dl ="U")) = OP12.dA (d="Y"))
AO(P14.d1 A (dl ='N') — $P12.d A (d="N")).

(16)

Formula (15) dictates the flow of access request from port
P11 to P13, and (16) specifies that the DC follows (14).

Once the above constraint patterns are formalized, the
same technique described in Section 4.2.4 can be used to
verify the consistency between the constraint of (8) and
intermediate component constraint patterns of (13), (15),
and (16).

4.3.2 Model of RBAC Policy Evaluator (PE)

Fig. 9 shows the behavior model of the RBAC PE: When it is
invoked by DC (P15 is marked) with a message from DC
that includes the static attributes (sa) of the principal, the
type of operation (op), and the resource name (res), the PE
searches the permission assignment table (Table 7 of
Appendix A) for the resource named res (transition sr
fires). If it doesn’t find the resource (transition n fr fires), it
returns “U” (stands for unknown) to DC. If it does
(transition fr fires), for each role in RL(sa), it checks the
permission table to see if operation op on the resource is
permitted. If no role is permitted to perform the operation
(transition nfp fires), it returns “N” to DC. Otherwise
(transition fp fires), it returns “Y” to DC.

4.3.3 Component Verification

Once we have the behavior model of a component, a number
of available techniques, e.g., reachability analysis [30], model
checking [11], [14], simulation, theorem proving [37], can be
used to verify or check its conformance to the component
constraint patterns. Because the techniques are readily
available in the literature, we will not describe the verifica-
tion process here. It is sufficient to say that the component
model of Fig. 9 satisfies its constraint pattern of (13).

Upon verifying that all the components satisfy their
corresponding constraint patterns, we can conclude that the
composition of the security system architecture satisfies its
system-wide security constraint pattern because we have
proven that those component constraint patterns are con-
sistent with the system-wide security constraint patterns.

4.4 Extended RAD Model to Support More Complex
Policies

In this section, we show that our methodology provides a
framework to support changes in security architecture. In

1112

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

P15

nfr:
RES=J
ST: I
nfp: <d:="U">
<RES > Sp: PASE (%)

RRF

PA={(1l, op, res)
[rle RL(sa)}"PA <PAg>

>P16

<d>

<sa, op, res>

fr:
RES, ={res}

<sa, op, res>

Notes:

RPS (RES): Related resource search result
RREF (saxopxres): Result of the policy search
PRS (PA): Related policy search result

ST
nfr not find the named resource
fr

sp Search in the policy base related policies to the request

find the named resource

Search in the policy base the named resource in the request

nfp not find related polices

fr find related polices

Fig. 9. Behavior model of the RBAC PE.

particular, we discuss how our approach helps minimize
the impact caused by changes of access control policies in
the modeling and analysis of security system architecture.

Policies 1 of Table 3 allows an employee to have certain
access to the records of all patients, regardless of whether
the employee is involved in the process of providing care to
a patient. Let us assume that new legislation requires the
hospital in our example to ensure that patient records are
accessed according not only to employee functions but also
to the fact that the employee is actually involved in the care
process for the patient. For example, only the attending
physician is now allowed to modify current episode records
of the patient. Also, let us assume that now patient relatives,
guardians, and designated representatives have the right to
limited access to the patient’s record. The new set of policies
is described below.

4.4.1 New Access Control Policies

The hospital, in order to become compliant with the new
legislation, augments its access control authorization
policies and replaces Policies 1 with the new policies listed
in Table 4.

The new policies require that only caregivers, those
participating the treatment process for a given patient, can
have access to the patient records according to their job
description. This is an example of the least-privilege security
principle (i.e., minimum privileges needed to complete a
task should be granted to a user). However, authorization
decisions for such policies can be made only if the (context
and time dependent) relationship between the patient and
the user (principal) are taken into account. It is very
challenging to make such authorization decisions if only

RBAC mechanisms are employed, which would require
additional control to be exercised via manual procedures in
medical records department of the hospital. This prevents
complete computerization of medical records and the
treatment processes. To avoid this situation, relationships
between users and patients whose records are about to be
accessed should be computed each time an authorization
decision is to be made.

To enforce the new policies, a new PE with relationship-
supporting role-based access control (RelBAC) mechanism
is needed. The introduction of the new PE causes the
change of the structure of the RAD service. In the next
section, we show the change is minimized to the recon-
struction of compound component DC&PEs.

4.4.2 RAD Reconfiguration to Support Policy Changes

Fig. 10 shows the composition of DC&PEs in the presence of
both RBAC PE and RelBAC PE. Refer to Appendix A for the
access control model designed for the new policies on
which both the (modified) RBAC PE and the (new) RelBAC
PE are based. When the DC is invoked by the ADO (P11
marked), it will invoke the two PEs (T6), and then collect
their decisions (T7). The final decision of the DC will go to
the ADO through port P12. Notice that, although the
structure of DC&PEs with one PE is different from that with
two PEs, they share the same external interface (ports P11
and P12). This allows both compositions to conform to the
base architecture model (Fig. 5) from the structure point of
view.

Now, the RBAC PE and RelBACE work together to
enforce the new access control policies. However, it is
possible to assign each policy to a specific PE based on its

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

1113

TABLE 4
New Policies (Policies 2)

No. Description

P2.1 Any care-giver can read patient’s name.

pP2.2 Registration clerk can modify patient name and demographic information.

P23 Nurse can read patient’s name and demographic information.

P24 Attending nurse, in addition to the rights of any other nurse, can modify current
episode demographic information, can read current episode regular records and current
episode regular test results.

P2.5 Technician can read patient’s name and modify current episode regular test results.

P2.6 Related technician, in addition to the rights of any other technician, can modify current
cpisode sensitive test results.

P27 Attending assistant physician, in addition to what a nursc can do, can also rcad all (i.c.
from the current and previous episodes) regular records and all regular test results, as
well as to modify current episode regular records.

P2.8 Attending physician, in addition to the rights of attending assistant physician, can
modify current episode sensitive regular records and can read all regular and sensitive
records from previous episodes.

P2.9 Attending psychiatrist, in addition to what an attending physician can do, also can
modify mental information.

P2.10 Patient relative can rcad paticnt’s current cpisode demographic and paticnt’s name.

P2.11 Patient guardian can rcad previous episodce regular data.

P2.12 Patient spouse can read previous episode sensitive data.

P2.13 Patient representative can read previous episode regular data provided that patient
gives a consent.

distinguishing function. By checking the new policies listed
in Table 4, we can find that policies P2.1, P2.2, P2.3, and P2.5
are suitable to be evaluated by the RBAC PE, while all other
policies are suitable to be evaluated by the RelBAC PE.

5 DiscusSIONS AND CONCLUSIONS

We have presented a formal methodology for the modeling
and analysis of software security system architectures.
Through the case study of the RAD architecture, we have
shown that our methodology provides a systematic way to
assure critical security constraints, in particular the enforce-
ment of required security policies, in the architectural
composition of security systems or services. We have
introduced security constraint patterns in the context of

system architecture model as a general and precise way to
define critical system properties that must be satisfied in
individual system design. We have also presented a
technique for consistent propagation of system constraints
in architectural refinement to guide the modeling and
verification process. It is also shown that the methodology
is both flexible and scalable. Verification is done separately
at architecture and component levels, which significantly
reduces the complexity of analysis.

Our contributions are twofold: a general methodology
for assuring security constraints in architectural decom-
position and concrete modeling and analysis techniques
that provide an implementation to the methodology. We
believe that this approach can be applied to different
application domains and provide a systematic way to

P13 (saxXdaXopXres) Invocation message
<sa, op, res RBAC P14 (ref xd) Decisions from PE’s
<sa, da, T6 PE P15 (saxopXres) Invocation message at RBAC PE
op, res> P16 P16 (ref xd) Decision made by RBAC PE
P11) P13 P17 (daxopxres) Invocation message at RelAC PE
P18 (ref Xd) Decision made by RelBAC PE
DC T6 DC invokes RBAC PE & RelBAC PE
Pl 2(4 C T) ReIBAC T7 RBAC & RelBAC PEs pass decision to DC
+<RelBAC, d2> _p B R PE
P18

Fig. 10. DC&PEs model for relationship-based authorization.

1114

ensure the compliance of security constraints in design.
However, how to assign security constraints to individual
components or subsystems is not only a domain specific but
also a system specific design issue, which is not and should
not be dictated by the methodology presented in this paper.
This is because a given assignment represents a specific
partition of responsibility or functionality of the compo-
nents and determines (in part) the interfaces and protocols
between the components. Our methodology, however, can
be used to ensure that a given partition satisfies the system-
wide constraints and the analysis can be used to compare
and evaluate different design alternatives. In database
systems, for example, though query optimizer does not
explicitly handle any security function, its behavior none-
theless affects system security. One might impose security
constraints on the module such that the query optimizer
cannot change any security attributes associated with the
query and it can only accept request from trusted sources.
In [38], an elaborate set of security constraints is presented
for multilevel secure database management systems (MLS/
DBMS) and a distributed system architecture is described to
handle security constraint processing in distributed MLS/
DBMS environment. It would be an interesting research
issue to apply the methodology presented in this paper to
verify if indeed the proposed constraint processing archi-
tecture of [38] guarantees the security constraints.

The result presented in this paper helps to bridge the gap
between the practical design of software security systems
and formal analysis that exists today. We believe that such a
methodology not only helps ensure the integrity of critical
early design decisions of software security systems, but also
provides a framework to guide security system implemen-
tation. Furthermore, we believe that, in addition to security
constraints, the approach presented in this paper is
applicable to other critical properties, e.g., performance,
availability and fault tolerance, of security system design as
well. How to model these critical properties or quality
attributes as distinct aspects of the design that coexist under
a common architecture framework and how to assess these
properties in the architectural composition of security
systems, based on the approach introduced in this paper,
are currently under investigation.

APPENDIX A

AN INTRODUCTION TO ROLE-BASED
AND RELATIONSHIP-BASED ACCESS CONTROL

In RBAC [35], [36], roles are used to describe individuals’
function in the organization. The roles are treated as an
attribute of an individual. Appropriate permissions are
associated with each role for resource access. The role
assignment effectively enables the permissions in RBAC
mechanisms.

Assume a hospital uses RBAC to control access to
patients’ records, which are composed of the parts as
shown in Table 5. User to role assignment relation (UA)
is shown in Table 6 and role hierarchy is shown in Fig. 11
along with permision assignment relation (PA) in Table 7.
For simplicity, we have only seven users, from a to g.
Each of them, except user d, is assigned to only one role
according to their functions in the hospital. The role
hierarchy indicates that a user can act in any role junior

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

TABLE 5
Sample Structure of Patient Medical Record

Part name Abbreviation
Patient name PN
Patient demographic data DD
Patient current episode demographic data CDD
Patient current episode regular records CRR
Patient current episode sensitive records CSR
Patient current episode regular test results CRT
Patient current episode sensitive test results CST
Patient regular records from previous episodes PRR
Patient sensitive records from previous episodes PSR
Patient regular test resulls from previous episodes PRT
Patient sensitive Lest resulls [rom previous episodes PST
Patient mental information [rom all episodes PMI

to the one he or she is assigned in UA. For example,
user d can activate any of the following roles: caregiver,
technician, and nurse because he/she is assigned roles
nurse and technician. Suppose user e requests to read
sensitive test results from previous episodes (PST) of a patient.
From Table 6 we know that user e is a “Registration
Clerk” and, from Fig. 11, a “Registration Clerk” has all
rights of a “Care-giver.” By checking Table 7, we know
that a “Registration Clerk” can only modify PN and DD,
and a “Care-giver” can only read “PN.” We can conclude
that user e is not authorized to read PST.

A.1 Supporting Relationships in RBAC
(Relationship-Based Access Control (RelBAC)

RelBAC wuses relationships between entities to support
more complex, e.g., context-sensitive, policies [2]. For
example, the new policies in Table 4 require considering
not only a user’s role in the hospital, but also his (time-
dependent) relationship to the patients. To achieve this,
the role hierarchy is extended into a relationship
hierarchy (Fig. 12), which is in turn used to extend the
permission assignment relationship by combining role-
based assignment (Table 8) with relationship-based
assignment (Table 9). Suppose that user b, a physician,
requests to read sensitive records from previous episodes
(PSR) of a patient, and further suppose b is an attending
physician of this patient. By checking Table 9, we know
that an attending physician is permitted to read his
patient’s PSR. Hence, the request is granted.

APPENDIX B
FormAL NOTATIONS OF SAM

The underlying formal notation of SAM are predicate-
transition nets (PrT nets) [17] and first order temporal logic
[10], [16]. Their notations are summarized below.

B.1 Predicate/Transition Nets
A predicate/transition net consists of the following elements:

1. A directed graph (P,T,1,0), where

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

TABLE 6
User to Role Assignment Relation
Users
a|blc|d|le|f]|g
Psychiatrist v
Physician 4
Physician Assistant v
wny
% Nurse v
[~
Registration Clerk v
Technician v v
Care-giver v

e P is a finite set of places,

T is a finite set of transitions, PUT # ©,and
PNT =0,

e [:PxT— N is an input function that defines
directed arcs from places to transitions, where N
is a nonnegative integer,

e O:PxT— N is an output function that de-
fines arcs from transitions to places.

2. A structure set X consisting of some types of
individual tokens together with some operations
and relations.

3. A labeling of arcs with types of token variable
(including the zero-attributes indicating a nonargu-
ment token). Each label can be a multiple set

expression of the form < k1 x 1,...,k,z, >, where
{z;} is a set of sorted variables, and {k;} a set of
constants.

4. An inscription on some transition being a logical
formula constructed from the operation and rela-
tions of the structure ¥ and variables occurring at
the surrounding arcs.

1115

Psychiatrist

Physician

Physician Assistant

Nurse

l

Caregiver

Technician

Registration Clerk

Fig. 11. Role hierarchy.

5. A marking of the places of P with n attributes of

individual tokens.

Firing rules: An instance of typed label variables of tokens
is an occurrence mode of a PrT net. We use e : « to denote the
result of instantiating an expression e with «. A transition is
a_enabled at marking M if M(p) > I(p,t) : aforp € P.If tis
a_enabled at M, t may fire in occurrence mode a. The firing
of ¢t with a returns the marking M’ defined by M'(p) =
M(p)(I(p,t) : a UO(t,p) : o for p € P. The state space of the
system consists of the set of all markings connected to the
initial marking through such occurrence of firing.

B.2 First Order Temporal Logic
First order temporal logic is a kind of modal logic. The first
order temporal logic used in this paper contains the
following temporal operators: always, represented by O,
sometimes, represented by ¢, and next, represented by O.
As a first order language, first order temporal logic
consists of two kinds of expressions: temporal terms and
temporal formulas. Temporal terms are constructed from
individual constants, individual variables, function sym-
bols, and temporal operator O. Temporal formulas are
constructed from predicate symbols (including equality

TABLE 7
Permission Assignment (PA) Relation for Role Hierarchy (for Policies 1)
Resources
PN DD CDD | CRR | CSR | CRT | CST | PRR | PSR | PRT | PST PMI
Psychiatrist M
Physician M M R R R
Physician R R
iz Assistant
Nurse R M R R
Registration M M
Clerk
Technician M M
Care-giver R

1116

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

Permission Assignment RelatiorT?PBk)Efc?r Role Hierarchy (for Policies 2)
Resources
PN | DD | CDD | CRR | CSR | CRT | CST | PRR | PSR | PRT | PST | PMI
Psychiatrist
Physician
Physician
g Assistant
Nurse R M
Registration | M M
Clerk
Technician M
Caregiver R

and propositions), function symbols, individual con-
stants, individual variables, the classical operators (-,
A, V, D, €, and =) and quantifiers (3 and V), and the
temporal operators (d, <, and O). In this paper, all
individual constants, individual variables, and predicate
symbols are rigid, function symbols can be rigid or
flexible—flexible symbols may change their values in
different states, while rigid symbols do not.

Temporal logic formulas are evaluated under computa-
tion models. A computation model for temporal logic is a
tuple (I, o, and o), where [is an interpretation that specifies
the domain under consideration and assigns meanings to

constants, function symbols, and predicate symbols accord-
ing to their sorts, o is an assignment that assigns a value
from the domain of the nonnegative rational numbers with
0 to each of the individual variables, and o = sys1 ... is an
infinite sequence of states. In this paper, the set of variables
is the set P of places and the set of states is the set of all
reachable markings.

B.3 The Software Architectural Model (SAM)
Formally, an SAM model consists of a set of compositions C
(a composition may correspond to a design level, or the
concept of subarchitecture) and a hierarchical mapping h:

TABLE 9
Permission Assignment Relation for the Relationship Hierarchy (Fig. 12)

Resources

PN | DD | CDD | CRR | CSR

CRT | CST | PRR | PSR PRT | PST | PMI

Attending
Psychiatrist

Attending M
Physician

Attending M
Physician
Assistant

Attending M R
Nurse

Relationships

Related
Technician

Related R

Care-giver

Patient

Spouse

Guardian

Relative R R

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES 1117

Patient

Assistant Attending
Spouse Physician

Attending

Psychiatrist

Attending Physician

Related ‘Technician

Attending Nurse
Related Care-giver

Fig. 12. Relationship hierarchy.

SAM = (C, h), where

1. C={C,Cs,...,C¢},and Ci = {Cm,Cn, Cs} foreach
C;, where

Cm is a set of components. For each

Cm;j € Cy,,Cmj = (Sm;, Bm;),

where

Smy; is a property specification (component
constraints) of component C'm;. It is defined
by a set of first-order temporal logic
formulas.

Bmj is the behavior model of component
Cm;. It is defined by a PrT net. Let

C’mJPORT = {p|p S C’m]P ANepn
Cm; T=oApenCm;T = 0}.

Cm;.PORT is the set of ports of compo-
nent C'm; which defines the interface of the
component (any place p with an empty
input preset, e pNCm;. T = ©, is an input
port, and any place p with an empty postset,
epNCm;T =, is an output port). In
addition, there is no common node between
any two components, i.e., for

Vij, Cmy, € C;.Cm,

Cm;.PNCmy.P =,

Cm; T NCmy.T = .
For any constraint ¢, denoted by ¢. PORT,
the set of ports is used as atomic proposi-

tions of c¢. Thus, for each c & Smj the
following holds:

c¢.PORT C Cm;.PORT.

That is, a component constraint only uses
ports that belong to the component.

Chn is a set of connectors. For each

Cnj € C,,Cnj = (Snj?an)v

where

- Sn; is a property specification (connector
constraints) of connector Cn;. It represents
the requirements on its functionality and is
defined by a set of first-order temporal logic
formulas.

- Bnj is the behavior model of connector Cn;.
It is defined by a PrT net such that

CnjeCn

J Cm;.P\Cm;.PORT | =0,
Cm;eCm

Cn;eCn Cm;eCm

The above conditions require that a con-
nector cannot use any internal nodes of a
component as its own nodes. Similarly, for
each c € Sn;, the following condition holds:

¢.PORT C Cn;.PORT.

The overall behavior (PrT) model of
composition C; is defined by the union of
all the component and the connector models

within it:

CZP: U C’m]P @] U CVTL]‘.I:)7
Cm;eCm CnjeCn

ar=| |J em1|u |J On, T
Cm;eCm Cn;eCn

Let

C;.PORT_EXT = {p|p €
|J Cm;PORT nepnCi.T =0

cm;eCm

VpenCi.T = 0}.

C;. PORT_EXT is the set of ports that are
not used by any connector. Ports in
C;. PORT_EXT are called external ports
of Cz'-
Cs is a set of architectural constraints. Each
CUs;j € Cs is a first-order temporal logic formula
and it only uses ports as its atomic propositions.
Similar to component constraints and connector
constraints, the atomic proposition is true at the
moment 7 iff:

- marking transition happens at 7 and

- the port contains a token in the new
marking. In the temporal structure
¥ =(S,R,L),S =M, where M is a PrT net
marking; R is a binary relation on S, which
is indicated by firing transitions; and L is a
mapping: M — C;. PORT. In addition, the
following condition is enforced:

1118

A

ce SmiUSmUC’sC (17)

vC; € C,VCmy € C;.Cm,h : Cmy — Cj,5 #i

such that
[]
Cmy.PORT = C;.PORT_EXT, (18)
[]
Cmy.Smy C C;.Cs. (19)

Equation (17) states that all constraints should be
consistent with each other and it establishes the (horizontal)
constraint/specification consistency condition. Equation (18)
states that when refining a component into a subarchitec-
ture, the subarchitecture must inherit all ports of the
component as all its external ports, and it establishes the
structural consistency condition. Equation (19) states that when
refining a component into a subarchitecture, the subarchi-
tecture must conform to all constraints/specifications which
the component are subject to (behavioral consistency). Such a
consistency ensures that the system requirements are met in
every step of the design process. Equations (18) and (19)
together give the vertical (interface) consistency conditions.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grant No. CCR-0098120 and by the US
Army Research Office under grant No. DAAG55-98-1-0428.
The views and conclusions contained herin are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements either
expressed or implied by the above agencies.

REFERENCES

[1] J. Barkley, “Implementing Role-Based Access Control Using
Object Technology,” Proc. First ACM Workshop Role-Based Access
Control, pp. 93-98, 1995.

[2] J. Barkley and K. Beznosov et al., “Supporting Relationships in
Access Control Using Role Based Access Control,” Proc. ACM
Role-Based Access Control Workshop, pp. 55-65, 1999.

[3] K. Beznosov and Y. Deng et al. “A Resource Access Decision
Service for CORBA-Based Distributed Systems,” Proc. Ann.
Computer Security Applications Conf., pp. 310-319, 1999.

[4] P. Bieber and N. Boulahia-Cuppens, “Formal Verification of
Authentication Protocols,” Proc. BCS-FACS Sixth Refinement Work-
shop, 1994.

[5] B. Blakley, CORBA Security: An Introduction to Safe Computing with
Objects. Addison-Wesley, 1999.

[6] D. Bolignano, “Towards a Mechanization Cryptographic Protocol
Verification,” Lecture Notes in Computer Science, vol. 1254, p. 131,
1997.

[71 G. Booch, Object-Oriented Analysis and Design with Applications,
second ed. Benjamin/Cummings, 1994.

[8] R. Boyer and]J. Moore, A Computational Logic. New York:
Academic Press, 1979.

[9] M. Burrows et al, “A Logic of Authentication,” ACM Trans.
Computer Systems vol. 8, no. 1, pp. 18-36, 1990.

[10] L.S. Cauman, First-Order Logic. Berlin: Walter de Gruyter, 1998.

(1]

[12]

(13]

(14]

(15]

[16]
(17]
(18]
[19]

[20]
(21]

(22]

(23]

[24]

(23]

[20]
(27]

(28]
[29]

(30]
(31]
(32]
(33]
(34]
(35]

(36]

[37]

(38]

(39]

(40]

[41]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 5, SEPTEMBER/OCTOBER 2003

EM. Clarke et al, “Model Checking and Abstraction,” ACM
Trans. Programming Languages and Systems, vol. 16, no. 5, pp. 1512-
1542, 1994.

Y. Deng and J. Wang, “Integrated Architectural Modeling and
Analysis for High-Assurance Command and Control System
Design,” Annals Software Eng., vol. 7, pp. 47-70, 1999.

Y. Deng and C.R. Yang, “Architecturedriven Modeling of Real-
Time Concurrent Systems with Application in FMS,” J. Systems
and Software, vol. 45, pp. 61-78, 1999.

E.A. Emerson and A.P. Sistla, “Symmetry and Model Checking,”
Proc. Fifth Int'l Conf. Computer Aided Verification, 1993.

R. Filman and T. Linden, “SafeBots: A Paradigm for Software
Security Controls,” Proc. New Security Paradigms Workshop, pp. 45-
51, 1996.

M. Fitting, “First-Order Modal Tableaux,”]. Automated Reasoning,
vol. 4, pp. 191-213, 1988.

H.].G. Genrich, “High-Level Nets Fundamentals,” Proc. Advances
in Petri Nets 1990, pp. 207-247, 1990.

F. Gittler and A.C. Hopkins, “The DCE Security Service,” Hewlett-
Packard |., vol. 46, no. 6, pp. 41-48, 1995.

L.M. Gong et al. “Going Beyond the Sandbox: An Overview of the
New Security Architecture in the Java Development Kit 1.2.,” Proc.
USENIX Symp. Internet Technologies and Systems, pp. 103-112, 1997.
I. Graham, Migrating to Object Technology. Addison-Wesley, 1995.
B. Hailpern and H. Ossher, “Extending Objects to Support
Multiple Interfaces and Access Control,” IEEE Trans. Software
Eng., vol. 16, no. 11, pp. 1247-1257, Nov. 1990.

J. Hale et al., “Security Policy Coordination for Heterogeneous
Information Systems,” Proc. Ann. Computer Security Applications
Conf., pp. 219-228, 1999.

X. He, F. Zeng, and Y. Deng, “Specifing Software Architectural
Connectors in SAM,” Proc. 11th Int'l Conf. Software Eng. and
Knowledge Eng., 1999.

R.A. Kemmerer, “Analyzing Encryption Protocols Using Formal
Verification Techniques,” IEEE |. Selected Areas in Comm., vol. 7,
no. 4, pp. 448-457, 1989.

C. Lai et al., “User Authentication and Authorization in the Java
Platform,” Proc. Ann. Computer Security Applications Conf., pp. 285-
290, 1999.

G. Lowe, “An Attack on the Needham-Schroeder Public-Key
Protocol,” Information Processing Letters, 1995.

C. Meadows, “Applying Formal Methods to the Analysis of a Key
Management Protocol,” J. Computer Security, pp. 5-36, 1992.

B. Meyer, Object—Oriented Construction. Prentice Hall, 1988.

T.J. Mowbray and W.A. Ruh, Inside CORBA - Distributed Object
Standards and Applications. Addison-Wesley, 1997.

T. Murata, “Petri Nets: Properties, Analysis and Applications,”
Proc. IEEE, vol. 77, no. 4, pp. 541-580, 1989.

OMG. CORBAservices: Common Object Services Specification, Secur-
ity Service Specification. Object Management Group, 1996.

J.R. Putman, Architecturing with RM-ODP. Prentice Hall PTR, 2001.
T. Riechmann and F.J. Hauck, “Meta Objects for Access Control: A
Formal Model for Role-Based Principals,” Proc. New Security
Paradigms Workshop, pp. 30-38, 1998.

J. Rumbaugh, M. Blaha, W. Premelani, F. Eddy, and W. Lorensen,
Object-Oriented Modeling and Design. Prentice Hall, 1991.

R. Sandhu et al., “Role-Based Access Control Models,” Computer,
vol. 29, no. 2, pp. 38-47, Feb. 1996.

R. Sandhu and Q. Munawer, “How to Do Discretionary Access
Control Using Roles,” Proc. ACM Workshop Role-Based Access
Control, pp. 47-54, 1998.

S. Schneider, “Verifying Authentication Protocols in CSP,” IEEE
Trans. Software Eng., vol. 24, no. 9, pp. 741-758, Sept. 1998.

B. Thuraisingham and W. Ford, “Security Constraint Processing in
a Multilevel Secure Distributed Database Management System,”
IEEE Trans. Knowledge and Data Eng., vol. 7, no. 2, pp. 274-293, Apr.
1995.

J. Wang and Y. Deng, “Incremental Modeling and Verification of
Flexible Manufacturing Systems,”]. Intelligent Manufacturing,
vol. 10, no. 6, pp. 485-502, 1999.

J. Wang, X. He, and Y. Deng, “Introducing Software Architecture
Specification and Analysis in SAM through an Example,”
Information and Software Technology, vol. 41, no. 7, pp. 451-467,
1999.

J. Wang, G. Xu, and Y. Deng, “Reduction Rules for Components in
SAM,” Proc. Fifth Int’l Conf. Integrated Design and Process
Technology, 2000.

DENG ET AL.: AN APPROACH FOR MODELING AND ANALYSIS OF SECURITY SYSTEM ARCHITECTURES

[42] J. Warmer and A. Kleppe, The Object Constraint Language—Precise
Modeling with UML. Addison-Wesley, 1999.

[43] T.Y.C. Woo and S.S. Lam, “Designing a Distributed Authorization
Service,” Proc. IEEE INFOCOM, 1998.

[44] M.E. Zurko et al, “A User-Centered, Modular Authorization
Service Built on an RBAC Foundation,” Proc. Ann. Computer
Security Applications Conf., 1998.

Yi Deng received the PhD degree in computer

science from the University of Pittsburgh in

1992. He is currently the director of the School

of Computer Science at Florida Interanational

(University at Miami. From August 2000 to May

2002, he served as the managing director of the

Embedded Software Center at the University of

Texas at Dallas (UTD), a joint R&D consortium

between UTD and industry dedicated to ad-

vanced software engineering technology for

embedded software systems, and a tenured associate professor of

computer science. Prior to joining UTD, he was at Florida International

University (FIU) the State University of Florida at Miami, where he was

the director of the Center for Advanced Distributed System Engineering

(CADSE), a university research center designated by the Florida Board

of Regents, and an associate professor of computer science. His

research interests include component-based software engineering,

software architecture, formal methods for complex systems, CORBA,

and embedded systems. He has published extensively in these areas.

He has been the P1/Co-PI of a number of research grants/contracts from

various US federal agencies, such as US National Science Foundation,

US Air Force Office of Scientific Research, US Air Force Research

Laboratory, National Areonautics and Space Administration, as well as

from industry. Dr. Deng is an editor for the International Journal on

Software Engineering and Knowledge Engineering, a PC member and

referee for many conferences and journals. He was the program

committee cochair for 10th International Conference on Software

Engineering and Knowledge Engineering (SEKE '98). He is a member
of the IEEE and the ACM.

Jiacun Wang received the PhD in electrical and
computer engineering from Nanjing University of
Science and Technology (NUST), China, in
1989 and 1991, respectively. He is currently a
member of the scientific staff with Nortel Net-
works in Richardson, Texas. Prior to joining
Nortel, he was a senior research associate at the
Center for Advanced Distributed Systems En-
gineering in the School of Computer Science,
Florida International University (FIU). He was an
associate professor at NUST. His research interests include software
engineering, discrete event systems, formal methods, and distributed
information systems. He has published more than 40 research papers in
journals and conferences. He was a member of the program committee
for the 1994 International Conference on Electronics and Information
Technology, Beijing, China, a member of the program committee for the
1997 IEEE Conference on Systems, Man, and Cybernetics, Orlando,
Florida, and a member of the program committee for the 1998 IEEE
Conference on Systems, Man and Cybernetics, San Diego, California.
Dr. Wang is a senior member of the IEEE.

1119

Jeffrey J.P. Tsai received the PhD degree in
computer science from Northwestern University,
Evanston, lllinois. He is a professor in the
Department of Electrical Engineering and Com-
[puter Science at the University of lllinois at
- Chicago, where he is also the director of the
< Distributed Real-Time Intelligent Systems La-
S boratory. He coauthored Knowledge-Based
g Software Development for Real-Time Distribu-
ted Systems (World Scientific, 1993), Distributed
Real-Time Systems: Monitoring, Visualization, Debugging, and Analysis
(John Wiley & Sons, Inc., 1996), Compositional Verification of
Concurrent and Real-Time Systems (Kluwer, 2001), coedited Monitoring
and Debugging Distributed Real-Time Systems (IEEE/CS Press, 1995),
and has published extensively in the areas of knowledge-based software
engineering, software architecture, requirements engineering, formal
methods, agent-based systems, and distributed real-time systems.
Dr. Tsai was the recipient of a University Scholar Award from the
University of lllinois in 1994 and was presented a Technical Achieve-
ment Award from the IEEE Computer Society in 1997. He is currently
the co-editor-in-chief of the International Journal of Artificial Intelligence
Tools. He is also an editor of the Annals of Software Engineering, the
International Journal of Software Engineering and Knowledge Engineer-
ing, and the International Journal of Systems Integration. He is a fellow
of the IEEE, the AAAS, and the SDPS.

Konstantin Beznosov received the PhD in
computer science from Florida International
University (FIU) in 2000. He is currently a
security architect at Concept Five Technologies,
a premier e-business solutions provider. Prior to
joining the company, he had been with Florida
International University-the State University of
Florida at Miami, where he was a senior
research associate at the Center for Advanced
Distributed System Engineering (CADSE), a
university research center designated by the Florida Board of Regents,
and a graduate student at the School of Computer Science. His research
and professional interests include security of distributed enterprise
application systems, component-based software engineering, software
architecture, and middleware systems. He has a number of publications
in these areas. Dr. Beznosov has been a PC member of the Distributed
Objects and Components Security (DOCSec) Workshop. He is a
member of the IEEE and the ACM

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

