
Seven More Myths of Formal Methods:
Dispelling Industrial Prejudices

Jonathan P. Bowen1 and Michael G. Hinchey2

1 Oxford University Computing Laboratory, Programming Research Group
Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

Email: Jonathan.Bowen@comlab.ox.ac.uk
2 University of Cambridge Computer Laboratory

New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK.

Email: Mike.Hinchey@cl.cam.ac.uk

Abstract. For whatever reason, formal methods remain one of the more
contentious techniques in industrial software engineering. Despite some

improvement in the uptake of formal methods, it is still the case that

the vast majority of potential users of formal methods fail to become
actual users. A paper by Hall in 1990 [31] examined a number of `myths'

concerning formal methods, assumed by some to be valid. This paper

considers a few more beliefs held by many and presents some counter

examples.

1 Introduction

Formal Methods continue to grow in popularity; growing numbers of delegates

at conferences such as FME and ZUM are indicative of this. Unfortunately, as

interest in formal methods increases, the number of misconceptions regarding

formal methods continues to grow in tandem. While formal methods have been

employed, to some extent, for over a quarter of a century, there are still very

few people who understand exactly what formal methods are, and how they are

applied in practice [3]. Many people completely misunderstand what constitutes

a formal method, and how formal methods have been successfully employed in

the development of complex systems. Of great concern is the fact that we must

place many professional system developers into that latter category.

2 Hall's Original Seven Myths

In a seminal article [31], Hall highlights seven popular misconceptions, or `myths'

as he calls them, of formal methods, and attempts to dispel these by means of

an example. Regretfully, four years later, these and other misconceptions still

abound. Formal methods are unfortunately the subject of extreme hyperbole or

deep criticism in many of the `popular press' science journals. From the claims

that the authors of such articles make, it is quite clear that they have little or

no understanding of what formal methods are, nor how they have been applied

in industry.

For example, an article in The Independent on Sunday of 13th October 1991

focused on fears for the reliability of the software running the Sizewell-B Nuclear



Reactor. This was one of the more objective articles run by the popular press,

and proposed `back�tting' the Sizewell-B software with formal methods as has

been done at Darlington [45]; indeed work on this has now started [2]. An article

published at the same time in New Scientist also advocated the use of formal

methods in the Sizewell system. This, however, was a primary example of the

over-enthusiasm of so-called `experts'. It suggested that the Sizewell system could

only be reliable if formal methods were employed in its development and that

formal methods would eliminate all bugs and guarantee the safety of the system.

Even technical journals are not exempt; Barwise [4] reports on the contro-

versy of proofs of correctness arising in fora such as Communications of the ACM.

He concludes that mathematical proofs of computer systems are of limited ap-

plicability because of the gulf between the model derived and reality. Barwise

sees this `vision' as the main contribution of his paper. But, no formal methods

specialist would ever claim that a system was absolutely correct, but rather that

it was correct with respect to its speci�cation. Such misunderstandings of formal

methods are quite typical amongst their fervent critics.

Indeed even basic terms such as `formal speci�cation' are likely to be confused

[15]. A search of the abbreviation CSP in an on-line acronym database gave

the answers Commercial Subroutine Package, CompuCom Speed Protocol and

Control Switching Point, but not the name Communicating Sequential Processes

which would spring to the minds of many in the formal methods community.3

Besides ambiguity in the basic terminology, the formal notations themselves can

of course be confusing to practitioners not trained in their use and in general it

is easier to ignore them than to investigate them further [17].

Myths that formal methods can guarantee perfect software and eliminate the

need for testing (Myth 1 in Hall's paper) are not only ludicrous, but can have

serious rami�cations in system development if na��ve users of formal methods

take them seriously. Claims that formal methods are all about proving programs

correct (Myth 2 in Hall's paper) and are only useful in safety-critical systems

(Myth 3), while untrue, are not quite so detrimental, and a number of successful

applications in non safety-critical domains have helped to clarify these points

(see [35] for examples).

The derivation of a number of simple formal speci�cations of quite com-

plex problems, and the successful development of a number of formal methods

projects under budget have served to dispel the myths that the application of

formal methods requires highly trained mathematicians (Myth 4) and increases

development costs (Myth 5). The successful participation of end-users and other

non-specialists in system development with formal methods has ruled out the

myth that formalmethods are unacceptable to users (Myth 6), while the success-

ful application of formal methods to a number of large-scale complex systems,

many of which have received much media attention, should put an end to beliefs

that formal methods are not used on real large-scale systems (Myth 7).

3 A search for VDM did reveal the term Vienna Development Method, but also Vir-

tual DOS Machine and Virtual Device Meta�le which may or may not be desirable

bedfellows!



Many non-formalists seem to believe that formal methods are merely an

academic exercise, a form of mental masturbation for academics that has no

relation to real-world problems. Highly publicized accounts of the application

of formal methods to a number of well-known systems, such as Sizewell-B [2],

CICS [36], the Darlington Nuclear Facility [45] and Airbus [46], have helped to

bring the industrial application of formal methods to a wider audience.

3 Seven More Myths

Many of Hall's myths were, and to a certain extent still are, propagated by the

media, and are myths held by the public and the computer science community at

large, rather than by specialist system developers. It is our concern, however, that

many other myths are still being propagated, and more alarmingly, are receiving

a certain degree of tacit acceptance from the system development community.

We hope to dispel many of those myths here, by reference to a number of real-

life industrial applications of various formal methods which have proven to be

generally successful. Many of the examples cited here are discussed in greater

detail in [35]. We include a signi�cant bibliography of references in this paper

to allow readers to follow up on any of the large number of topics covered in

outline here if they so wish.

Myth 1. Formal Methods delay the development process.

A number of formal methods projects have run notoriously over schedule. The

assumption that this is inherent in the nature of formal methods is a rather

irrational deduction. Certainly these projects were not delayed due to the lack

of ability of the formal methods specialists, but rather a lack of experience in

determining how long development should take. That is to say, the projects were

not necessarily delayed, but development time was severely underestimated.

Project cost estimation is a major headache for any development team. De-

termining project development time is equally di�cult (in fact, the two are in-

evitably intertwined). A number of models have been developed to cover cost and

development time estimation. Perhaps the most famous is Boehm's COCOMO

model [5], which weights various factors according to the historical results of

system development within the organization.

Here we have the crux of the problem. Any successful model of cost and

development-time estimation must be based on historical information and de-

tails such as levels of experience, familiarity with the problem, etc. Even with

traditional development methods, such information might not be available. Us-

ing formal development techniques historical information is likely to be even

more scarce, as we have not yet applied formal methods to a su�cient number

of projects on which to base trends and observations. Surveys of formal devel-

opment [20, 21] and a highlighting of successes, failures, hindrances, etc., will

eventually provide us with the levels of information we require.

Many of the much publicized formal methods projects are in very specialized

domains, and domains that are unlikely to be addressed on a very regular basis.



As such, such data is of limited use; comparisons with more conventional develop-

ments [25, 32] and applications in more process control-like domains [19, 22, 47]

are likely to provide more useful data.

In addition, working in such unfamiliar domains would naturally be expected

to greatly increase the development time (if one follows a model �a la COCOMO)

as would working with methods that were (then) still pretty much in their in-

fancy, with little or no tool support.

We draw the reader's attention to some very successful formal methods

projects whereby the use of such methods reduced development time signi�-

cantly. We include here the 12 month saving on the development of the Inmos

T800 
oating-point unit chip, and the application of Z and B to IBM's CICS

system [36]. Both of these projects were independently audited and these claims

to reduced lead-times over conventional development methods were con�rmed.

Myth 2. Formal Methods are not supported by tools.

The next level of usage is to apply formal methods to the development process

(e.g., VDM), using a set of rules or a design calculus that allows stepwise re�ne-

ment of the operations and data structures in the speci�cation to an e�ciently

executable program. At the most rigorous level, the whole process of proof may

be mechanized (e.g., using B [1] or RAISE tools [49]). Hand proofs or design

inevitably lead to human errors occurring for all but the simplest systems.

Just as in the late '70s and early '80s, when CASE (Computer-Aided Soft-

ware Engineering) and CASP (Computer-Aided Structured Programming) tools

were seen as a means of increasing programmer productivity and reducing pro-

gramming `bugs', tool support is now seen as a means of increasing productivity

and accuracy in formal development. Most of the projects discussed in [35], for

example, place great emphasis on tool support. This is by no means coincidental,

but rather follows a trend, which it is expected will eventually result in integrated

workbenches to support formal speci�cation, just as CASE workbenches support

system development using more traditional structured methods [21].

A number of basic tools are now widely available, many of them in the public

domain. For example, ZTC is a public-domain PC and Unix-based type-checking

system for Z, and the commercialized fuzz type-checker also runs under Unix.

More integrated packages that support typesetting and integrity checking of

speci�cations include Logica Cambridge's Formaliser, Imperial Software Tech-

nology's Zola, which also incorporates a tactical proof system, and CADiZ, a

suite of tools for Z from York Software Engineering, which has recently been

extended to support re�nement to Ada code. FDR from Formal Systems Europe

is a model-checker and re�nement-checker for CSP. ProofPower, a tool available

from ICL, uses Higher-Order Logic to support speci�cation and veri�cation in

Z.

Perhaps motivated by the ProofPower approach, much attention has focused

recently on tailoring various `generic' theorem provers for use with model-based

speci�cation languages such as Z. An implementation in OBJ [41] seems to be too

slow, but particular successes have been reported with HOL [12] and EVES [52].

We expect that in the future more emphasis will be placed on IFDSEs (In-



tegrated Formal Development Support Environments), which will support most

stages of formal development. Such toolkits will be integrated in that, like IPSEs

(Integrated Programming Support Environments), they will support version con-

trol and con�guration management, and facilitate more harmonious develop-

ments by addressing all of the development process activities, and development

by larger teams. Such IFDSEs do not as yet exist, but a number of toolkits

certainly represent steps in the right direction.

IFAD's VDM-SL Toolbox is a set of tools which supports formal develop-

ment in draft standard VDM-SL. As one might expect, standard type-checkers

and static semantics checkers are supported. An interpreter supports all of the

executable constructs of VDM-SL allowing a form of animation and speci�ca-

tion `testing'; the executed speci�cations may be debugged using an integrated

debugger, and testing information is automatically generated.

The B-Toolkit from B-Core (UK) Ltd., is a set of integrated tools which

augments Abrial's B-Method for formal software development by addressing in-

dustrial needs in the development process. Many believe B and the B-Method to

be representative of the next generation of formal methods; if this is true, then

the B-Toolkit, and other similar such toolkits, will certainly form the basis of

future IFDSEs.

Myth 3. Formal Methods mean forsaking traditional engineering design meth-

ods.

One of the major criticisms of formal methods is that they are not so much

`methods' as formal systems. While formal methods support some of the design

principles of more traditional methods, such as top-down design and stepwise re-

�nement, there is very little emphasis on an underlying model that encompasses

each of the stages of the system development life cycle, nor any guidance as to

how development should proceed.

Structured development methods, using a model of development such as

Boehm's `spiral' model [6], on the other hand, generally support all stages of the

system life cycle from requirements elicitation through to post-implementation

maintenance. Their underlying models, in general, recognize the iterative nature

of system development, and that system development is not a straightforward

process as exempli�ed in, for example, Royce's `waterfall' model [51]. Yet, in

many senses, many formal development methods assume that speci�cation is

followed by design and implementation in strict sequence. This is an unrealistic

view of software development, and every developer of complex systems has expe-

rienced the need to revisit both system requirements and the system speci�cation

at much later stages in development.

While Hall [31] disputes the myths that a high degree of mathematical abil-

ity is required to be comfortable with formal methods, and that formal methods

are unacceptable to users, more traditional design methods do indeed excel at

requirements elicitation and interaction with system procurers. They o�er nota-

tions that can be understood by non-specialists and which can be o�ered as the

basis for a contract.

Indeed, instead of formal methods replacing traditional engineering design



methods, a major area for current and future research is the integration of

structured and formal methods. Such an integration leads to a `true' method

of development that fully supports the software life cycle, while admitting the

use of more formal techniques at the speci�cation and design phases, supporting

re�nement to executable code, and proof of properties.

Approaches to method integration vary from running both structured and

formal methods in parallel, to formally specifying transformations from the no-

tations of structured methods to formal speci�cation languages. Much success

has been reported using the former technique [24, 40]. The problem is however

that as the two development methods are being addressed by di�erent person-

nel, the likelihood that the bene�ts of the approach will be highlighted is low.

In many cases, the two development teams do not adequately interact.

More integrated approaches include the translation of SSADM into Z, as

part of the SAZ project [48], the integration of Yourdon and Z in a more formal-

ized manner [53, 54], and the integration of various structured notations with

VDM [39] and CSP [50]. These all augur much potential, but unlike the parallel

approach have yet to be applied to realistic systems.

Myth 4. Formal Methods only apply to software.

Formal methods can equally well be applied to hardware design as to software

development [37]. Indeed, this is one of the motivations of the HOL theorem

prover which was used to verify parts of the Viper microprocessor. Other theorem

proving systems which have been applied to the veri�cation of hardware include

the Boyer-Moore, Esterel, HOL, Nuprl, 2OBJ, Occam transformation system and

Veritas proof tools. Model checking is also important in the checking of hardware

designs if the state space is su�ciently small to make this feasible. However

techniques such as Binary Decision Diagrams (BDDs) allow impressively large

numbers of states to be handled.

Perhaps the most convincing and complete hardware veri�cation exercise is

the FM9001 microprocessor produced by Computational Logic Inc. in the US,

and which has been veri�ed down to a gate level netlist representation using the

Boyer-Moore theorem prover. Two examples of real industrial use are provided

by Inmos. The T800 Transputer 
oating-point unit has been veri�ed by starting

with a formalized Z speci�cation of the IEEE 
oating-point standard, and using

the Occam Transformation System to transform a high level program to the low

level microcode by means of proven algebraic laws. More recently, parts of the

new T9000 Transputer pipeline architecture have been formalized using CSP

and checked for correctness. [37] contains a number of invited papers written by

experts in the �eld and covers the applications outlined here in more detail.

A more recent approach to the development of hardware is hardware com-

pilation. This allows a high-level program to be compiled directly into a netlist

of simple components such as gates and latches together with there intercon-

nections. The technology of Field Programmable Gate Arrays (FPGAs) allows

this process to be undertaken entirely as a software process if required (which

is particularly useful for rapid-prototyping) since these devices allow the circuit

to be con�gured according to the contents of a static RAM within the chip.



It is possible to prove the compilation process itself correct [34]. In this case

the hardware compiled each time need not be separately proven correct, thus

reducing the proof burden considerably.

In the future, such an approach could allow the possibility of provably cor-

rect combined hardware/software co-design. A uni�ed proof framework would

facilitate the exploration of design trade-o�s and interactions between hardware

and software in a formal manner.

Myth 5. Formal Methods are not required.

We have all heard the argument that formal methods are not required. This

is a mistruth; while there are occasions where formal methods are in a sense

`over-kill', there are situations where they are very desirable. In fact, the use of

formal methods is recommended in any system where the issue of correctness is

of concern.

This clearly applies to safety-critical and security-critical systems, but equally

to systems which are not classi�ed in these terms, but where one needs, or

wishes, to ensure that the system operates correctly. (See for example [43] which

presents the formal speci�cation of an algorithm to determine the result in a

single transferable voting system.) There are occasions however where formal

methods are not only desirable, but positively required. A number of standards

bodies have not only used formal speci�cation languages in making their own

standards unambiguous [58], but have mandated or strongly recommended the

use of formal methods in certain classes of applications [7, 16].

The International Electrotechnical Commission speci�cally mentions a num-

ber of formal methods (CCS, CSP, HOL, LOTOS, OBJ, VDM, Z) and temporal

logic in the development of safety-critical systems. The European Space Agency

suggests that VDM or Z, augmented with natural language descriptions, should

be used for specifying the requirements of safety-critical systems. It also ad-

vocates proof of correctness, a review process, and the use of formal proof in

advance of testing.

The UK Ministry of Defence (MoD) draft Interim Defence Standards 00-

55 and 00-56 mandate the extensive use of formal methods. The requirements

of Standard 00-55 include the use of a formal notation in the speci�cation of

safety-critical components, and an analysis of such components for consistency

and completeness. All safety-critical software must also be validated and veri�ed;

this includes formal proof and rigorous (but informal) correctness proofs, as well

as more conventional static and dynamic analysis. Standard 00-56 deals with the

classi�cation and hazard analysis of the software and electronic components of

defence equipment, and also mandates the use of formal methods.

The Atomic Energy Control Board (AECB) in Canada has commissioned

a proposed standard for software for computers in the safety systems of nu-

clear power stations in conjunction with David Parnas at McMaster University.

Standards and procedures developed by Canadian licensees mandate the use of

formal methods, and together with 00-55 are still some of the few to go so far

at the moment.

Whether or not one believes that formal methods are necessary in system



development, one cannot deny that they are indeed required in certain classes of

applications, and are likely to be required in an increasing number of cases in

the future [7].

Myth 6. Formal Methods are not supported.

Formal methods have been under development since the mid-1960s. But it is in

the last decade that signi�cant developments have evolved, and over the last few

years interest in formal methods has grown phenomenally. Along with `object-

orientation' and a few other keywords, it has quickly become one of the great

`buzz-words' in the computer industry.

Many formal languages have been extended to support particular needs, with

the addition of useful (though sometimes unsound) operators and data struc-

tures, as well as module structures and object-oriented concepts. There is a cer-

tain degree of `trade-o�' between the expressiveness of a language and the levels

of abstraction that it supports [57]. Making a language more expressive does

indeed facilitate briefer and more elegant speci�cations, but can make reasoning

more di�cult.

LOTOS was standardized in 1989 (ISO 8807), and draft international stan-

dards for both VDM and Z have been proposed under ISO/IEC JTC1/SC22 [7].

The X3J21 Technical Committee on Formal Description Techniques (FDT) is

overseeing the VDM and Z standardization process and is also interested in fu-

ture developments such as object-oriented extensions to FDTs and their possible

standardization.

Obviously, a standard is pointless if it does not re
ect the opinions of ac-

tive users, and the developments that have evolved in formal methods. There

are now a number of outlets for practitioners to discuss draft standards, and

to seek advice and solutions to problems and di�culties from other practition-

ers. Chief among these outlets are various (especially electronic) distribution

lists, such as the Z FORUM (contact zforum-request@comlab.ox.ac.uk or see

the gatewayed comp.specification.z newsgroup) and the recently established

VDM FORUM (contact vdm-forum-request@mailbase.ac.uk). A Larch inter-

est group (contact larch-interest-request@src.dec.com) and a HOL infor-

mation list (contact info-hol-request@lal.cs.byu.edu) are also in operation.

Electronically accessible anonymous FTP archives for Z (including an on-line

and regularly revised comprehensive bibliography [8]) and other formal methods

exist on the global Internet computer network. The global World Wide Web

(WWW) electronic hypertext system also provides support for formal methods.

A useful starting point is the following WWW page which provides pointers to

other electronic archives concerned with formal methods throughout the world,

including substantial publicly accessible tools such as HOL [28], the Larch Prover

(LP) [30], Nqthm [18], OBJ [27] and PVS [44] for downloading on the network:

http://www.comlab.ox.ac.uk/archive/formal-methods.html

The proceedings of various symposia and workshops o�er invaluable reading

on current developments in formal methods; many of these (e.g., [13, 59]) are



available in the Springer Verlag Lecture Notes in Computer Science and Work-

shops in Computing series.

Formalmethods are not quite so popular in the US, although they are gaining

momentum there. There is as yet no regular conference in the US devoted to

formal methods, but perhaps the forthcoming Workshop on Industrial-strength

Formal speci�cation Techniques (WIFT) represents a step in that direction.

Again the main journals and publications devoted to formal methods are

based in Europe, and the UK speci�cally. These include Formal Aspects of Com-

puting, Formal Methods in System Design and the FACS Europe newsletter,

amongst others. The Computer Journal, Software Engineering Journal and In-

formation and Software Technology regularly publish articles on, or related to,

formal methods, and have run or plan a number of special issues on the subject.

In the US, as far as the authors are aware, there are no journals devoted

speci�cally to formal methods, although some of the highly respected journals,

such as IEEE Transactions on Software Engineering and the Journal of the

ACM, and the popular periodicals such as IEEE Computer, IEEE Software and

the Communications of the ACM regularly publish relevant articles. IEEE TSE,

Computer and Software ran very successful coordinated special issues on formal

methods in 1990. More recently, in January 1994 an IEEE Software special issue

on safety-critical systems also devoted a not inconsiderable amount of attention

to formal methods [38], as has a newly launched journal in this area entitled

High Integrity Systems.

Formal methods (in particular Z, VDM, CSP and CCS) are taught in most

UK undergraduate computer science courses. Although still quite uncommon in

the US, an NSF-sponsored workshop aims to establish a curriculum for teach-

ing formal methods in US undergraduate programmes. One would hope that

this will help to establish formal methods as a regular component of US univer-

sity curricula. A number of industrially-based courses are also available, and in

general can be tailored to the client organization's needs.

Once upon a time, formal development might have been a lone activity, but

certainly one can no longer argue that formal methods are not supported.

Myth 7. Formal Methods people always use Formal Methods.

There is widespread belief that the proponents of formal methods apply formal

methods in all aspects of system development. This could not be further from

the truth. Even the most fervent supporters of formal methods must recognize

that there are certain aspects of system development for which formal methods

are just not as good as other approaches.

In user-interface (UI) design, for example, it is very di�cult to formalize ex-

actly the requirements of the human-computer interaction. The appropriateness

of a UI is a very subjective matter, and not really amenable to formal investiga-

tion. Although there have been a number of (somewhat successful) approaches to

the formal speci�cation of UIs [23], in general it is accepted that UI conformance

testing lies in the domain of informal reasoning.

There are many other areas where, although possible, formalization is just

not practical from a resource, time, or �nancial aspect. Most successful formal



methods projects involve the application of formalmethods to critical portions of

system development. Only rarely are formalmethods, and formalmethods alone,

applied to all aspects of system development. Even within the CICS project [36],

only about a tenth of the entire system was actually subjected to formal tech-

niques (although this still involved 100,000s of lines of code and 1000s of pages of

speci�cations). With appropriate apologies to Einstein for the following maxim:

System development should be as formal as possible, but not more formal.

What is perhaps surprising is that many tools to support formal develop-

ment have not been developed using formal techniques. Formal methods have

indeed been applied to the development of a number of support tools for con-

ventional development methods, such as the SSADM CASE tool described by

Hall [31]. They have also been used as part of the (re)development process in

a reverse engineering and analysis tool-set for COBOL at Lloyd's Register [10].

In addition, they have been successfully employed in de�ning reusable software

architectures [26], where the use of Z greatly simpli�ed the decomposition of

function into components, and the protocols of interaction between components.

To the best of our knowledge, however, with the exception of the VDM-SL

Toolkit, formal methods have often not been used extensively in the develop-

ment of the formal methods support tools described in Myth 2 (above). HOL is

addressing this issue by the addition of a formally developed proof checker.

4 Conclusion

The question arises as to how the technology transfer process from formal meth-

ods research to practice can be facilitated [56]. More real links between industry

and academia are required; and well publicized demonstrations of successful uses

of formal methods are needed to disseminate the bene�ts of their use. [35] aims

to play its part in this by providing a collection of descriptions of the use of

formal methods at an industrially useful scale written by the experts involved.

More research is of course required to develop the use of formal methods. For

example, the European ESPRIT Basic Research project ProCoS on \Provably

Correct Systems" is investigating the theoretical underpinning and techniques

to allowing the formal development of systems from requirements through spec-

i�cation, program and hardware in a uni�ed framework [11]. In addition, an

associated ProCoS-WG Working Group of 24 industrial and academic part-

ners has been set up for the next three years as an integral part of the project's

plans [9].

As usual, it should be stressed that formalmethods are not a panacea, but one

approach amongst many that can help to improve system reliability. However,

to quote Prof. Bev Littlewood, Centre for Software Reliability, City University,

London, on a programme broadcast on 19 October 1993 by BBC Radio 4, it

should be noted that:

\. . . if you want to build systems with ultra-high reliability which provide

very complex functionality and you want a guarantee that they are going

to work with this very high reliability . . .



. . .you can't do it!"

Acknowledgements

The authors would like to thank Anthony Hall for the inspiration of his origi-

nal paper on the Seven Myths of Formal Methods [31] which made this paper

possible. The paper is itself based on a longer Technical Report [14].

Jonathan Bowen is funded by the UK Engineering and Physical Research

Council (EPSRC) on grant no. GR/J15186.

Mike Hinchey is currently with University of Cambridge Computer Labora-

tory, and is a faculty member of the Real-Time Computing Laboratory, Depart-

ment of Computer and Information Science, New Jersey Institute of Technology,

USA.

References

1. Abrial, J.-R.: Assigning Meanings to Programs. Prentice Hall International Series

in Computer Science, to appear.

2. Anderson, S. & Bruns, G.: The Formalization and Analysis of a Communication

Protocol. In [35].

3. Austin, S. & Parkin, G.I.: Formal Methods: A Survey, National Physical Labora-
tory, Teddington, Middlesex TW11 0LW, UK, March 1993.

4. Barwise, J.: Mathematical Proofs of Computer System Correctness. Notices of the

American Mathematical Society, 36(7):844{851, September 1989.

5. Boehm, B.W.: Software Engineering Economics, Prentice Hall, 1981.

6. Boehm, B.W.: A Spiral Model of Software Development and Maintenance. IEEE

Computer, 21(5):61{72, May 1988.
7. Bowen, J.P.: Formal Methods in Safety-Critical Standards. In Proc. 1993 Software

Engineering Standards Symposium (SESS'93), Brighton, UK, IEEE Computer So-

ciety Press, 1993, pp 168{177.
8. Bowen, J.P.: Select Z Bibliography. In [13], pp 359{396. Also available as Oxford

University Computing Laboratory Technical Report PRG-TR-8-94, June 1994.

9. Bowen, J.P. et al.: A ProCoS II Project Description: ESPRIT Basic Research
project 7071, Bulletin of the European Association for Theoretical Computer Sci-

ence (EATCS), 50:128{137, June 1993.

10. Bowen, J.P., Breuer, P.T. & Lano, K.C. Formal Speci�cations in Software Mainte-
nance: From code to Z++ and back again. Information and Software Technology,

35(11/12):679{690, November/December 1993.

11. Bowen, J.P., Fr�anzle, M., Olderog, E-R. & Ravn, A.P.: Developing Correct Systems.
In Proc. Fifth Euromicro Workshop on Real-Time Systems, Oulu, Finland, 22{24

June 1993. IEEE Computer Society Press, pp 176{187.

12. Bowen, J.P. & Gordon, M.J.C.: Z and HOL. In [13], pp 141{167.
13. Bowen, J.P. & Hall, J.A., editors: Z User Workshop, Cambridge 1994. Springer-

Verlag, Workshops in Computing, 1994.

14. Bowen, J.P. & Hinchey, M.G.: Seven More Myths of Formal Methods. Oxford Uni-

versity Computing Laboratory Technical Report PRG-TR-7-94, June 1994.

15. Bowen, J.P. & Stavridou, V.: The Industrial Take-up of Formal Methods in Safety-

Critical and Other Areas: A Perspective. In [59], pp 183{195.



16. Bowen, J.P. & Stavridou, V.: Safety-Critical Systems, Formal Methods and Stan-
dards. Software Engineering Journal, 8(4):189{209, July 1993.

17. Bowen, J.P. & Stavridou, V.: Formal Methods: Epideictic or Apodeictic? Software

Engineering Journal, 9(1):2, January 1994.

18. Boyer, R.S. & Moore, J.S.: A Computational Logic Handbook. Academic Press,

1988.

19. Coombes, A.C., Fitzgerald, J.S., McDermid, J.A., Saeed, A. & Spencer, L.: Formal
Speci�cation of an Aerospace System: The Attitude Monitor. In [35].

20. Craigen, D., Gerhart, S. & Ralston, T.: An International Survey of Industrial Ap-

plications of Formal Methods (Volume 1: Purpose, Approach, Analysis and Con-
clusions, Volume 2: Case Studies). Atomic Energy Control Board of Canada, U.S.

National Institute of Standards and Technology, and U.S. Naval Research Labo-

ratories, NIST GCR 93/626, 1993. Available from National Technical Information
Service, 5285 Port Royal Road, Spring�eld, VA 22161, USA.

21. Craigen, D., Gerhart, S. & Ralston, T.: Applications of Formal Methods: Obser-

vations and Trends. In [35].
22. Dehbonei, B. & Mejia, F.: Formal Development of Safety-Critical Software Systems

in Railways. In [35].

23. Dix, A.: Formal Methods for Interactive Systems. Academic Press, Computers and
People Series, 1991.

24. Draper, C.: Practical Experiences of Z and SSADM. In Bowen, J.P. & Nicholls,

J.E., editors: Z User Workshop, London 1992, Springer-Verlag, Workshops in Com-
puting, 1993, pp 240{254.

25. Fitzgerald, J.S., Larsen, P.G., Brookes, T. & Magillian, P.: Developing a Security-

Critical System using Formal and Conventional Methods. In [35].

26. Garlan, D. & Delisle, N.: Formal Development of a Software Architecture for a

Family of Instrumentation Systems. In [35].

27. Goguen, J.A. & Winkler, T.: Introducing OBJ3. Technical Report SRI-CSL-88-9,

Computer Science Laboratory, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025, USA, August 1988.

28. Gordon, M.J.C. & Melham, T.F., editors: Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, 1993.
29. Guaspari, D., Seager, M. & Stillerman, M.: Specifying the Kernel of a Secure

Distributed Operating System. In [35].

30. Guttag, J.V. & Horning, J.J: Larch: Languages and Tools for Formal Speci�cation,
Springer-Verlag, Texts and Monographs in Computer Science, 1993.

31. Hall, J.A.: Seven Myths of Formal Methods. IEEE Software, 7(5):11{19, September

1990.
32. Hamilton, V. & Quinn, K.F.: A Case Study in the Use of Z within a Safety-Critical

Software System. In [35].

33. Haughton, H. & Lano, K.: Formal Development of Safety-Critical Medical Systems.
In [35].

34. He Jifeng, Page, I. & Bowen, J.P.: Towards a Provably Correct Hardware Imple-

mentation of Occam. In Milne, G.J. & Pierre, L., editors: Correct Hardware Design
and Veri�cation Methods, Springer-Verlag, LNCS 683, 1993, pp 214{225.

35. Hinchey, M.G. & Bowen, J.P., editors: Applications of Formal Methods. Prentice

Hall International Series in Computer Science, to appear 1995.

36. Hoare, J.: Formal Development of CICS with B. In [35].

37. Hoare, C.A.R. & Gordon, M.J.C., editors: Mechanized Reasoning and Hardware

Design. Prentice Hall International Series in Computer Science, 1992.



38. Knight, J. & Littlewood, B., editors: Special issue on Safety-Critical Systems. IEEE
Software, January 1994.

39. Larsen, P.G., Plat N. & Toetenel, H.: A Formal Semantics of Data Flow Diagrams.

Formal Aspects of Computing, 6, 1994.

40. Leveson, N.G.: Software Safety in Embedded Computer Systems. Communications

of the ACM, 34(2):34{46, February 1991.

41. Martin, A.: Encoding W: A Logic for Z in 2OBJ. In [59], pp 462{481.
42. Mataga, P. & Zave, P.: Multiparadigm Speci�cation of an AT&T Switching System.

In [35].

43. Mukherjee, P. & Wichmann, B.A.: Formal Speci�cation of the STV Algorithm.
In [35].

44. Owre, S., Rushby, J.M. and Shankar, N.: PVS: A Prototype Veri�cation System.

In Kapur, D., editor: Automated Deduction { CADE-11, Springer-Verlag, LNAI
607, 1992, pp 748{752.

45. Parnas, D.L.: Using Mathematical Descriptions in the Inspection of Safety-Critical

Software. In [35].
46. Peleska, J., Hamer, U. & Hoercher, H.-M.: The Airbus A330/340 Cabin Commu-

nication System { A Z Application. In [35].

47. Plat, N., Durr, E.H. & de Boer, M.: CombiCom: Tracking and Tracing Rail Tra�c
using VDM++. In [35].

48. Polack, F. & Mander, K.C.: Software Quality Assurance using the SAZ Method.

In [13], pp 230{249.
49. The RAISE Language Group: The RAISE Speci�cation Language. Prentice Hall,

BCS Practitioner Series, 1992.

50. Randell, G.P.: Data Flow Diagrams and CSP. DRA Memorandum 4520, Malvern,
UK, February 1992.

51. Royce, W.W.: Managing the Development of Large Software Systems. In Proc.

WESTCON'70, August 1970, reprinted in Proc. 9th International Conference on
Software Engineering, IEEE Press, 1987.

52. Saaltink, M.: Z and Eves. In Nicholls, J.E., editor: Z User Workshop, York 1991,

Springer-Verlag, Workshops in Computing, 1992, pp 233{242.

53. Semmens, L.T., France, R.B. & Docker, T.W.G.: Integrating Structured Analy-

sis and Formal Speci�cation Techniques. The Computer Journal, 36(6):600{610,

December 1992.
54. Semmens, L.T. & Allen, P.M.: Using Yourdon and Z. In Nicholls, J.E., editor: Z

User Workshop, Oxford 1990, Springer-Verlag, Workshops in Computing, 1991,

pp 228{253.
55. Srivas, M., Miller, S. & Rushby, J.: Formal Veri�cation of AAMP5: A Case Study

in the Veri�cation of a Commercial Microprocessor. In [35].

56. Weber-Wul�, D.: Selling Formal Methods to Industry. In [59], pp 671{678.
57. Wing, J.M: A Speci�er's Introduction to Formal Methods. IEEE Computer,

23(9):8{24, September 1990.
58. Woodcock, J.C.P., Gardiner, P.H.B. & Hulance, J.R.: The Formal Speci�cation in

Z of Defence Standard 00-56. In [13], pp 9{28.

59. Woodcock, J.C.P. & Larsen, P.G., editors: FME'93: Industrial-Strength Formal
Methods. Springer-Verlag, LNCS 670, 1993.

60. Young, W.D.: Verifying a Simple Real-Time System with Nqthm. In [35].

This article was processed using the LaTEX macro package with LLNCS style


