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Abstract—Time Petri nets (TPNs) are a popular Petri net
model for specification and verification of real-time systems.
A fundamental and most widely applied method for analyzing
Petri nets is reachability analysis. The existing technique for
reachability analysis of TPNs, however, is not suitable for timing
property verification because one cannot derive end-to-end delay
in task execution, an important issue for time-critical systems,
from the reachability tree constructed using the technique. In this
paper, we present a new reachability based analysis technique for
TPNs for timing property analysis and verification that effectively
addresses the problem. Our technique is based on a concept
called clock-stamped state class(CS-class). With the reachability
tree generated based on CS-classes, we can directly compute the
end-to-end time delay in task execution. Moreover, a CS-class
can be uniquely mapped to a traditional state class based on
which the conventional reachability tree is constructed. Therefore,
our CS-class-based analysis technique is more general than the
existing technique. We show how to apply this technique to timing
property verification of the TPN model of a command and control
(C2) system.

Index Terms—Reachability analysis, real-time systems,
real-time verification, time Petri nets.

I. INTRODUCTION

A REAL-TIME system is one whose logical correctness
is based both on the correctness of the outputs and on

their timeliness [8], [10]. It must satisfy explicit (bounded) re-
sponse-time constraints or risk severe consequences, including
system failure. Consequently, a key requirement to real-time
systems is the end-to-end delay in task execution, a critical
issue in the design and analysis of these time critical systems
[9], [14], [15]. This paper aims to address the timing property
analysis and verification of real-time systems.

Real-time systems, such as aircraft navigation, command and
control, and power plant monitoring systems, are often reactive
or embedded control systems that must constantly react to their
environment and interact among components within the sys-
tems. Consequently, concurrency, resource sharing, synchro-
nization, and deadlock resolution are among essential issues

Manuscript received August 31, 1999; revised June 19, 2000. This work was
supported in part by the Army Research Office under Grant DAAG55-98-1-
0428, and by the National Science Foundation under Grant HDR-9707076. This
paper was recommended by Associate Editors M. A. Jafari and M. Zhou.

J. Wang is with the School of Computer Science, Florida International Uni-
versity, Miami, FL 33199 USA.

Y. Deng was with the School of Computer Science, Florida International Uni-
versity, Miami, FL 33199 USA. He is now with the Department of Computer
Science, University of Texas at Dallas, Richardson, TX 75083 USA (e-mail:
deng@cs.fiu.edu).

G. Xu is with AT&T Labs, Lincroft, NJ 07738 USA.
Publisher Item Identifier S 1083-4419(00)08300-X.

in the design and implementation of such systems. Petri nets,
for their ability to model these properties, become a suitable
model for modeling and analysis of this class of systems [3],
[12]. Several extended models of Petri nets were proposed to
deal with the timing issues [16]. These models include timed
Petri nets [13], [20], stochastic timed Petri nets [7], and time
Petri nets (TPNs) [11]. Among these models, TPNs are a most
widely used model for real-time system specification and ver-
ification [3], [6], [15], [17], [18]. In TPNs, event synchroniza-
tion is represented in terms of a set of pre- and post-conditions
associated with each individual action of the modeled system,
and timing constraints are expressed in terms of minimum and
maximum amount of time elapsing between the enabling and
the execution of each action. This allows a compact representa-
tion of the state space and an explicit modeling of concurrency
and parallelism.

A fundamental and most widely applied method for analyzing
Petri nets’ models, like for many other formal models, is reacha-
bility analysis. It permits the automatic translation of behavioral
specification models into a state transition graph made up of a
set of states, a set of actions, and a succession relation associ-
ating states through actions [3], [5]. This representation makes
explicit such properties as deadlock freedom and reachability
[19], and allows the automatic verification of ordering relation-
ships among task execution times [4], [15].

However, the existing techniques for reachability analysis of
TPNs is not well suited for dealing with the end-to-end timing
issues that are critical to real-time systems. Reachability anal-
ysis of TPNs is currently based on the concept of state classes
[2], [3], a mechanism that groups time-dependent system states
into equivalence sets in terms of the same discrete states char-
acterized by TPN markings, so as to reduce the state explosion
problem. A state class is composed of a marking and a firing
domain, which is defined as the union of the firing domains of
all states in the state class. The firing domain in a state class is
relative to the moments at which transitions are enabled. How-
ever, the value of the time at which the transitions are enabled
is unknown. The problem with this relative-time firing domain
is that there is no clear way to calculate the end-to-end time
needed for or required of task execution in the system being
modeled. In particular, linear addition of the transitions’ firing
intervals between two adjacent state classes in the reachability
tree of a TPN cannot result in the time span between the two
state classes. Consequently, reachability tree based on such a
state class concept does not give sufficient information required
for the timeliness analysis or timing verification of modeled sys-
tems. (See Section II for more details.) In order to derive the time
span information, one has to repeat the reachability analysis in

1083–4419/00$10.00 © 2000 IEEE
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a different way based on the obtained reachability tree [3]. In
ensuing discussion, we refer to a state class used in [2] as atra-
ditional state class.

In this paper, we present a new reachability analysis tech-
nique for TPN models that effectively addresses the problem
described above. Our technique is based on a concept called
clock-stamped state class(CS-class), which not only groups
system states into compact representation of state classes, but
also records the time, relative to the beginning of system exe-
cution, when such states are reached. In particular, a CS-class
consists of three parts: 1) a marking that represents a logical
state of the modeled system; 2) a “global” firing domain corre-
sponding to firing intervals, whose values are counted relative
to the beginning of the net’s execution, of allfirable transitions
in the state class; and (3) a clock stamp that corresponds to the
moment when the state class is reached with the clock value
relative to the beginning of the execution. We present an algo-
rithm to construct the reachability tree of the TPN based on the
CS-class concept. With the reachability tree generated based on
CS-classes, we can straightforwardly compute the time span be-
tween any two reachable CS-classes, thus the end-to-end time
delay in task execution. Moreover, a CS-class can be uniquely
mapped into a traditional state class, but not vice versa. There-
fore, the CS-class based analysis method is more general than
the traditional state class-based analysis method given in [2].

The rest of the paper is organized as follows. In Section II,
we present our CS-class based reachability analysis technique
for TPN models. In Section III, we illustrate the application of
this technique to timing property verification of the TPN model
of a command and control (C2) system. Section IV concludes
the paper.

II. TIMELINESS ANALYSIS OF TPN MODELS

In this section, we first give a brief introduction to TPNs
and the traditional state class concept. After pointing out the
problem associated with this concept, we proceed to present
the formal definition of CS-class for TPNs and define transi-
tion firing rules, which guide the construction of the reacha-
bility trees of TPNs based on CS-classes. We then show how
the reachability trees can be used for timing property analysis of
TPN. In addition, the following interval arithmetic will be used
later: Let and , with

. Then we define to be the interval
and to be .

A. Time Petri Nets

A TPN is a tuple SI where

1) is a finite nonempty set ofplaces.
2) is a finite nonempty set oftransi-

tions.
3) is thebackward incidence function.
4) is theforward incidence function.
5) is the initial marking. ( and together

define a Petri net.)
6) SI is a mapping calledstatic interval. SI

SEFT SLFT , whereSEFT is thestatic ear-
liest firing timeandSLFT thestatic latest firing time.

A stateof a TPN is a pair where
1) is a marking.
2) is a firing interval set which is a vector of possible firing

times. The number of entries in this vector is given by the
number of the transitions enabled by marking.

A state is reached from the initial state by a given sequence
of firing times corresponding to a firing sequence. Since any
reachable marking may be reached from the initial marking by
different sequence of firing times corresponding to the same
firing sequence, the state space may be infinite.

A state class[2] of a TPN is an aggregated pseudostate asso-
ciated with a firing sequence, which representsall states reach-
able from the initial state by firing all feasible firing values cor-
responding to the same firing sequence. A state class is a pair

in which:
1) is the marking of the class: all states in the class have

the same marking;
2) is the firing domain of the class, which is defined as the

union of the firing domain of all the states in the class.
A transition is firable from class if is en-

abledby marking , and may fire before the minimum of all
LFT’s related to all enabled transitions. For detailed firing rules
see [2].

The concept of state class helps generate reachability tree [2].
In a state class, the firing domain is relative to the epoch when
the marking of the class is reached, whose value is not known in
the reachability tree. Because of its relative domain, such a state
class concept, however, cannot directly provide any information
about time span between any two classesand where
can be reached from . This is because linear addition of the
firing intervals of the transitions that lead the net from state class

to state class cannot result in the time span between the
two state classes. Let us take the simple TPN shown in Fig. 1(a)
as an example. As we see, transitionsand are concurrent,
and starting from the initial state the net may take any time in in-
terval to reach the marking . Fig. 1(b) shows
the reachability tree based on classic state classes. There are
two schedules leading the net to marking that are charac-
terized by firing sequences and . Under the first firing
schedule, plus gives , and under the second
schedule, plus gives : none of the two re-
sults gives the correct time interval that leads the net from the
initial marking to .

In the next section, we present the concept of CS-class that
leads us to solve the problem.

B. Clock Stamped State Classes

A clock stamped state class(CS-class) is a 3-tuple
ST where

1) is a marking.
2) is a firing domain, i.e., a set of constraints on the

values of the time to fire for transitions enabled by current
marking . For an enabled transition represents
its firing interval. LetEFT be the left bound of
(the earliest firing time) andLFT be the right bound
of (the latest firing time).

3) STis the time stamp of the CS-class, which is a (global)
time interval.
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Fig. 1. (a) Simple TPN. (b) Reachability tree based on classic state classes.

As will be pointed out in Theorem 1, the transition firing
rules defined later will put meanings on the firing domain
and the time stampSTas follows: 1) For an enabled transition

gives the global firing time interval of , where by
“global” we mean the values are counted relative to the begin-
ning of the net’s execution from the initial CS-class—the
initial CS-class is defined as ST where is
the initial marking, contains all the static firing time inter-
vals of the transitions enabled at , andST ; 2) ST
gives the global time delay interval in which the net runs from
the initial CS-class to current CS-class .

Now we consider the firing rules that guide the generation of
all reachable CS-classes of a TPN. An enabled transitionis
said to befirableat CS-class if EFT LFT

, where is the enable set at . LetFr
be the set of firable transitions at CS-class, and let

MLFT LFT Fr (1)

whereMLFT defines the minimum of latest firing times
of all firable transitions inFr . We divide the firable transi-
tions inFr into two groups: 1)inherited firable transitions
that were firable before is reached and 2)new firable
transitions that begin firable at . The firing of transition

Fr changes the CS-class to . Let CS-class
ST and ST .

1) Transition Firing Rules:

Step 1) Calculate , the feasible firing intervals of the
firing transition . It is achieved by shifting right
bound of toMLFT while keeping its left
bound unchanged, i.e.,

EFT MLFT (2)

Fig. 2. Simple TPN model with concurrency, competence, and
synchronization.

Let

ST (3)

Step 2) Calculate firing intervals of inherited firable transi-
tions in CS-Class .

2.1 Let and collect (inherited)
firable transitions at .

2.2 Let and delete from all entries
whose corresponding transitions are disabled by

.
2.3 For each inherited firable transition at

, let

EFT EFT EFT (4)

Step 3) Calculate the firing intervals of new firable transi-
tions after firing .

3.1) Let and collect new firable
transitions: they are firable at but not firable at
virtual marking .

3.2) Add into entries that corresponding new firable
transitions at : if is a new firable
transition at , then

SI ST (5)

3.3) If is still firable at after its own firing, let

SI ST (6)

Note that by Step 3.3), a transition that is still enabled after
its own firing, is always treated as a newly enabled one. This
simplifies the treatment of states in which a transition has suf-
ficient tokens in its input places to permit multiple firings. The
treatment of this condition, usually referred to asmultiple en-
abledness[2], requires that multiple firing intervals be associ-
ated with a single transition and involves a number of semantic
subtleties that are not relevant to the objective of this paper.

Example 1: Consider a simple TPN model, shown in Fig. 2.
The initial CS-class is ST where

ST
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Fig. 3. Reachability tree of the TPN in Fig. 1.

Moreover, it follows from that

MLFT EFT EFT EFT

Firing will result in CS-class ST . Then it
follows from Step 1) that

ST EFT MLFT

And it follows from Step 2) that

EFT EFT LFT

EFT EFT LFT

Finally, it follows from Step 3) that

In , there is no new enabled transition. Thus, we get
ST as

ST

Similarly at , firing will result in CS-class
ST , where

ST EFT MLFT

At , firing will result in CS-class ST

where

ST

Notice that is enabled but not firable at because

EFT MLFT

At , firing results in CS-class ST where

ST

SI ST

Following this way, we can generate the reachability tree of the
example TPN, which is depicted in Fig. 3.

C. Timeliness Analysis of TPN Models

We have described the transition firing rules that guide the
evolution of CS-classes in Section II-B. Below, we are to show
the benefits that the new concept of state classes brings us. First,
Theorem 1 shows that what the firing domainand the time
stampST in a CS-class exactly stand for. Then, Corollary 1
shows what we can gain from the generation of the reachability
tree, and Theorem 2 shows the relationship between CS-classes
and traditional state classes. To facilitate our description, we de-
note the firing schedule that leads the TPN from initial state class

to state class by firing by

Theorem 1: Let ST be a reachable state
class from ST . Then
(C1) ST is the global time (interval) when CS-class

is visited
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(C2) If Fr , then is the global firing time
interval of .

Proof: From the preconditions, we know there must be a
firing schedule starting with and ending with , i.e.,

The proof of the theorem is carried out by induction on. For
the basis case is the initial class. Obviously we have:
1) Fr is exactly the static firing time interval
of , which is also the global firing time, and 2)ST ,
which is the arriving time of . Therefore, the assertion of the
theorem holds for .

Now assume that the assertion holds for . Consider
. It follows from (2) and (3) that

ST EFT MLFT (7)

In (7), EFT is the earliest global firing time of , and
MLFT , according to (1), is the minimum latest firing time
of all firable transitions inFr , hence the actual latest global
firing time of . Therefore,ST is the global firing time
interval of . Because firing a transition takes no time,ST

is also the global arriving time of state class , which is
reached by firing . So (C1) is proven.

Suppose that a transition is firable at . Now we prove
(C2) according to three different cases of.

Case1. is a newly enabled transition at and .
It follows from (1) and (7) that

SI ST

SEFT EFT SLFT MLFT

where,EFT is the earliest (global) arriving time of state
class SEFT the static (relative) earliest firing time
when is enabled at , soLEFT EFT is the
earliest global firing time of transition MLFT is the
latest (global) arriving time of state class SLFT the
static (relative) latest firing time when is enabled at , so
SLFT MLFT is the latest global firing time of tran-
sition . Therefore, is the global firing time interval
of .

Case2. .
Because we ignore multiple-enabledness, sois viewed as

a new enabled transition at . Thus the conclusion drawn
in Case 1 also applies to this case.

Case3. is an inherited transition.
In this case, it follows fromStep2 that

EFT EFT LFT

According to the assumption made for
EFT LFT is the global firing time interval of
transition at state class . The latest global firing time of
at should be the same as it is at ; however, the earliest
global firing time of at must take the larger value
of EFT and EFT , because is supposed to fire

after is reached. So, is the global firing time
interval of transition at state class .

Hence, the theorem holds.
It is worth pointing out that the proof also shows the sound-

ness and completeness of the global time intervalST . By
soundness we mean that if sequence fires, then
the current time must be inST ; by completeness we mean for
any time in ST , it is possible to fire sequence ,
and end at time and class . SoST gives the exact global
time interval when CS-class is visited.

Corollary 1: Let ST and
ST be two reachable CS-classes of a TPN

where is reachable from . If Fr is a newly
enabled transition, then the time span that the TPN runs from

to is ST ST .
Proof: Because all firable transitions at are newly en-

abled, the future behavior of the TPN starting fromis reached
is independent of the history before is reached. Suppose
that if the TPN starts running from class at time 0, it will
reach class at global time interval . Then we know
that if the TPN starts running from class at time , it will
reach class at global time interval . Futher-
more, if the TPN starts running from class at time interval
ST , it will reach class at global time interval
ST .
Because the time span that the TPN runs fromto is inde-
pendent of the starting time, it follows from Theorem 1 that the
time span is , or ST ST .

The conclusion of Corollary 1 can be directly used for time-
liness analysis. As mentioned in [15], the key issue of time-
liness analysis is to verify whether a marking can be reached
with timing constraints. Corollary 1 shows that the concept of
CS-classes helps establish quantitative timing relationship be-
tween any two reachable classes when creating the reachability
tree.

Example 2: Let us go back to Fig. 2. SinceST ,
the time span from to is ST , from to is ST ,
from to is ST , and from to is ST . Suppose
that we have a timing constraint that asks the absorbing marking

, in which classes , and stay, must
be reached within 150 time units from the initial marking, then
we know that the constraint is satisfied.

Example 3: Applying the CS-class reachability analysis
method to the TPN shown in Fig. 1, we get the reachability tree
as shown in Fig. 4. From the reachability tree we find that the
marking can be reached from via two firing
sequences: (left branch) and (right branch). The
time span via the first sequence is and the second sequence

. Therefore, marking can be reached within .
Obviously, it gives the correct end-to-end time delay.

The next theorem shows that a CS-class can be uniquely
mapped into a traditional state class. It is an interesting prop-
erty, because it reveals two facts: 1) CS-class-based analysis
method is as effective as the traditional method given in [2]
in constructing reachability tree, because no extra node is
introduced in the tree; and 2) CS-class-based analysis method
has all advantages that traditional state class based analysis
method has gained.
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Fig. 4. Reachability tree of the TPN in Fig. 1 based on CS-state classes.

Theorem 2: Let and be the CS-class set and the tra-
ditional state class set of a given TPN model, respectively. Let
ST EST LST for ST and suppose
that the firing of transition leads the TPN from to .
Then, for any , there is a corresponding such
that [see (8) at the bottom of the page].

Proof: We prove this theorem by checking CS-classes in
any given firable schedule

by induction on . For the basis case is the initial
CS-class ST , where is the initial marking,

contains all the static firing time intervals of the transitions
enabled at , andST . Correspondingly, we have

, where is the initial marking, contains
all the static firing time intervals of the transitions enabled at

. Obviously, we have , and . Because
ST , ST . It satisfies (8).

Now, assume that the assertion holds for . Consider
. Because and same rules are used to infer

new markings in both traditional state class generation method
and CS-class generation method, so we have .
Thus, for any transition Fr holds Fr .
We are going to prove the theorem in three cases.

Case1: is a new firable transition at . It follows from
(5) or (6) that SI ST ; on the other hand,

according to the firing rules of traditional state classes, we have
SI . Therefore, SI .

Case2: is an inherited transition at , and is a new
firable transition at . In this case, the relative firing time in-
terval of transition is EST EST LST LST .
So, the relative earliest firing time of transition at is

EFT LST LST , and the relative latest
firing time of transition at is LFT EST

EST . It gives

EFT LST LST

LFT EST EST

Case3: is an inherited transition at , and is an
inherited transition at . In this case, no matter when is
reached, transition may fire at any time in the global interval

EFT EST MLFT , and leads the TPN to
at EST LST . So, the relative firing time interval

of transition is EST EST LST

EST . Then, the relative earliest firing time of transitionat
is EFT LST EST , and the rel-

ative latest firing time of transition at is LFT
EST EST . It gives

EFT LST EST

LFT EST EST

Example 4: Consider the TPN shown in Fig. 2 again. Ac-
cording to Theorem 2 and based on the model’s CS-class-based
reachability tree shown in Fig. 3, we can easily compute the tra-
ditional state class-based reachability tree, which is shown in
Fig. 5. This traditional state class-based reachability tree can
also be computed by the use of state class enumeration method
given in [2].

To facilitate the timeliness analysis of TPNs, we implemented
a software tool named TPNm&a. The tool is coded in C++
and developed with UIM/X (professional edition), and presently
runs on Solaris.

III. T IMING PROPERTYVERIFICATION OF A C2 SYSTEM

In this section, we show the application of CS-class-based
reachability analysis to the verification of timing properties of a

ST

is a new firable transition at
EFT LST LST LFT EST EST

is an inherited transition at and is a new firable transition at
EFT LST EST LFT EST LST

is an inherited transition at and is an inherited transition at

(8)
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Fig. 5. Traditional reachability tree of the TPN in Fig. 2.

command and control (C2) system.1 A C2 system is a distributed
modularized system. It achieves mission success by executing
a set of generally accepted C2 functions in an asynchronous
manner. These functions include [1]Threat Detection, Threat
Discrimination, Identification and Tracking, Threatening As-
sessment, Battle Planning, Weapon-to-Target Assignment, En-
gagement Control, andDamage Assessment.

A simplified but typical structure of a tactic anti-air C2 system
with two levels of command and control centers is shown in
Fig. 6, which consists of one first-level command center (in-
dicated asC2 Center) and two second-level command centers
(indicated asSub-Centers). A pair of (C2 Center, Sub-Center)
may be (division, regiment) or (brigade, battalion). They are ge-
ographically dispersed due to environmental and survivability
reasons, which contributes to the distributed architecture of C2
organization.

A. Requirements of the C2 System

The operation of the system is described as follows.

1) Each radar group is composed of three air radars and a
data processor. The specification is

— Each radar senses air targets every 30 time units (TU).
— The data from the three air radars are fused at the pro-

cessor, which takes two to four TU.
— The fused data are coded (taking two to four TU) and

sent to their corresponding sub-center (taking one to
two TU).

2) The C2 Center is composed of threeseats: two intelli-
gence seatsand onedecision-making seat. The behavior
specification of this component is as follows:

— The two intelligence seats communicate with the deci-
sion-making seat through a common memory.

— The messages from three sub-centers are first copied
and dispatched to the two intelligence seats. The two
actions together take one to two TU.

— The two intelligence seats then do situation assessment
based on these messages to achieve a relatively more
precise situation figure (taking three to five TU), and

1Notice that the timing data in this case study is artificial and does not reflect
actual data in a real system.

Fig. 6. Structure of a tactic anti-air C2 system.

then makethreatening assessmentindependently for
each target and send the results to the decision-making
seat. The two actions together take three to five TU.

— The decision-making seat works on a scheme ofbattle
planning(taking five to six TU). The result is sent to
the three sub-centers (taking one to two TU).

3) Each sub-center is composed of an intelligence seat and a
decision-making seat. The behavior specification of this
component is as follows.

— The intelligence seat receives message from its radar
group and conductstarget discrimination, identifica-
tion andtracking, and further conductsthreatening as-
sessment, then sends the result to the C2 center. It takes
two to three TU.

— After receiving the scheme ofbattle planningfrom C2
center, the sub-center fuses it with related data in its
database (taking one to two TU) so as to form a de-
tailed scheme ofweapon-to-target assignment(taking
five to seven TU). Then, the results are sent to fire units
(taking one to two TU).

4) The specification of a Fire Unit is as follows.
— When the scheme ofweapon-to-target assignmentar-

rives from its sub-center, it conductsengagement con-
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trol (taking four to six TU) and sends fire command to
weapons (taking one to two TU).

— Then, it conductsdamage assessment(taking five to
seven TU), and feed backs the assessment results to
its corresponding sub-center in time (taking one to two
TU).

In this example, we focus on timing requirements including:
(R1) The system reaction time, i.e., the time delay from

a message regarding enemy intelligence being re-
ceived by any subcenter to a fire command against
the enemy being issued by a corresponding fire unit,
must be less than or equal to 45 time units.

(R2) Since a C2 system is a closed-loop system, a con-
straint reflecting the time limitation for the feed-
back of damage assessment results should be in-
cluded. This is captured by the requirement that the
time delay from a detailed firing assignment scheme
made by a sub-center to the result of the damage as-
sessment referred to the execution of this scheme re-
ceived by the same sub-center must be less than or
equal to 20 time units.

(R3) Since the bottleneck for information processing is
often located in the C2 Center, the center is always
asked to respond quickly. This is captured by the
requirement that the whole processing time for a
group of messages from the three sub-centers must
be less than or equal to 22 time units.

(R4) A C2 system is a real-time information processing
system. Obtaining targets’ information timely and
continuously is extremely important to win a war.
This is captured by the requirement that each Radar
Group outputs targets’ information periodically at a
period of 40 time units.

In order to simplify analysis, we also assume both sub-centers
have identical topology and timing properties, and all the two
fire units have identical topology and timing properties.

B. TPN Model of the C2 System

According to the structure and operation rules described
above, we build the system’s TPN model as shown in Fig. 7.
Table I gives its description. The TPN model is composed of
seven subnets, each of which corresponds to a component.
Transitions , and serve as
connectors among the components, and places RG1.MSG,
RG2.MSG, C2C.R1, C2C.R2, C2C.S1, C2C.S2, SC1.SI,

SC2.SI, SC1.RM, SC2.RM, SC1.RI, SC1.SM, SC2.SM,
FU1.S, FU2.S, FU1.R, and FU2.R serve as communication
ports of the components.

C. System Verification

The verification is driven by showing satisfaction of timing
requirements, which is monitored during the construction of
reachability tree, and terminated as soon as the goal is reached.
This avoids the generation of a complete reachability tree and
thus improves the efficiency.

In fact, we can use a submodel to analyze a timing require-
ment. The submodels used to analyze the four timing require-
ments listed in Section III-A are depicted in Figs. 8–11.

Let us take the analysis of requirement R3 as an example. The
initial marking is shown at the bottom of the page. Define
marking such that (see the second equation at the bottom of
the page). Applying reachability analysis described in Section II
gives the following CS-classes:

ST

C2C.R1,C2C.R2

ST

ST

p101, p102

ST

ST

p102, p103

ST

ST

p101, p104

ST

ST

p103, p104

ST

ST

C2C.R1 C2C.R2 p101 p102 p103 p104 C2C.S1 C2C.S2

C2C.R1 C2C.R2 p101 p102 p103 p104 C2C.S1 C2C.S2
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Fig. 7. TPN model of the C2 system.

C2C.S1, C2C.S2

ST

As we see, the time delay interval that the model takes to move
from marking to is ST ST . It implies that
the timing requirement R3 is proven satisfied.

Using the same technique, we can prove requirements R1 and
R2 satisfied based on Figs. 8 and 9, respectively.

Now, we consider requirement R4. Reachability analysis
shows that the TPN model dipicted in Fig. 11 has infinite

markings (see equation at the bottom of the page). However, the
reachability set has the following properties: 1) places p201–
p207 are safe; 2) when each of transitions and
fires one time, a token is deposited in place RG1.MSG; and 3)
if each of transitions and fires times,

or tokens must have been deposited in place RG1.MSG.
Based on these properties, it is easy to see that the net exhibits
the same behavior from marking to marking

as from marking to
marking . We can
easily derive that the time for marking to be

p201 p202 p203 p204 p205 p206 p207 RG1.MSG
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TABLE I
LEGEND FORFIG. 7

reached from the initial marking is .
So the requirement R4 is satisfied. Now, all requirements are
verified.

IV. CONCLUSION

A new reachability-based analysis technique for TPN is
presented. It is based on a concept called clock-stamped state
class (CS-class). With the reachability tree generated based on

CS-classes, we can straightforwardly compute the end-to-end
time delay in task execution. Moreover, a CS-class can be
uniquely mapped to a traditional state class based on which
the conventional reachability tree is constructed. Therefore,
the CS-class-based analysis technique is more general than the
existing technique. A command and control system is used as
an example to show the timing property verification procedure.

Currently, we are working on a compositional timing property
verification technique, which helps to control the complexity of
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Fig. 8. Submodel for verifying requirement R1.

Fig. 9. Submodel for verifying requirement R2.

Fig. 10. Submodel for verifying requirement R3.

Fig. 11. Submodel for verifying requirement R4.

large-scale real-time system analysis. We have developed a set
of component-level reduction rules for TPNs in [17].
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