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Abstract

Software architecture study has become one of the most active research areas in software engineering in the recent years. Although there
have been many published results on specification and analysis method of software architectures, information on sound systematic meth-
odology for modeling and analyzing software architectures is lacking. In this article, we present a formal systematic software architecture
specification and analysis methodology called SAM and show how to apply SAM to specify a command control (C2) system and to analyze
its real-time constraints.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Software architecture study has become one of the most
active research areas in software engineering in recent years
[1]. Although there have been many published results on
specification and analysis methods of software architectures
[2,3], information on sound systematic methodology for
modeling and analyzing software architectures is lacking.
In this article, we present a formal systematic software
architecture specification and analysis methodology (called
SAM) through a command control (C2 system). The goal of
this article is twofold. Firstly, we introduce SAM in a light-
weight fashion, and secondly, we demonstrate the specifica-
tion and analysis of the software architecture of a typical C2
system. As pointed out in [1], the examination of significant
architectural case studies can greatly help in defining the
field of software architecture [4,5].

As our emphasis of this article is to demonstrate SAM
through a C2 system, we keep the discussion light on the
foundation and methodology of SAM and only present the
features of SAM relevant to the C2 system.

SAM has been developed with the goal to define software
architectures and their properties precisely and to facilitate
their formal analysis, and thus use formal methods [6–8] as
its foundation. Sharing the similar views with several other
formal software architecture approaches (Rapide [2] and
CHAM [3]), we see the great importance of an executable
software architecture specification and thus use time Petri
nets (TPN) [9–11] as one of the foundations of the under-
lying model of SAM. However, it is well known that the
property-oriented formal methods are suitable for formal
verification [12,13], and hence we use real-time computa-
tional tree logic [14] as the other formal foundation of SAM
model to explicitly represent and reason about the architec-
tural properties at a high level. Although dual formal meth-
ods have been used in system specification and verification
(for example, integrating Petri nets with temporal logic [15–
17] and their advantages have been widely recognized in the
recent years [18]; our use of dual complimentary formal
notations in a unified framework for software architecture
study is distinct and unique.

Another major goal of SAM is to support the scalability
of software architecture specification and analysis. SAM
supports the scalability through hierarchical architectural
decomposition. Although the concept of hierarchical
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architectural decomposition is not new and has been used in
several other approaches (Unicon [19] and Rapide [2]),
SAM supports both hierarchical software architecture speci-
fication and analysis. In SAM, a software architecture is
modeled as a multi-leveled composition of subsystems
(components and connectors specified in TPN), together
with the specification of system requirements (specified in
RTCTL). Each component (connector) has its own property
specification (in RTCTL) and behavior model (in TPN). The
specification and analysis of each component (connector) is
done separately. The propagation of the requirements goes
in lockstep with the refinement of system design, and serves
as the design goals of the subsystems in the refinement.
Doing so, SAM lays a foundation for an incremental process
of architectural refinement and analysis that is both scalable
and flexible. Horizontally at each design level, a system
model can be constructed and analyzed compositionally.
Vertically across design levels, lower level (interface speci-
fication conforming) sub-architecture can be built and
analyzed incrementally and recursively.

2. Overview of SAM

In SAM, system architecture is specified by a set-theore-
tical recursive definition such that multi-layered composi-
tions and hierarchical system refinements can be defined and
analyzed separately. Horizontally at any given abstraction
level, the model captures not only the operational property
(modules—components and connectors, and their composi-
tion) but also the descriptive architectural requirements
(calledarchitectural constraintsin SAM) that each of the
modules and their composition must satisfy at every design
level. Such a strong correlation between system design and
system requirements systematically maintains the integrity
of design against requirements. Vertically, there is a
mapping between any consecutive design levels. Particu-
larly, the propagation of the requirements goes in lockstep
with the refinement of system design, and serves as the
design goals of the subsystems in the refinement, as well
as the target of verification. During architectural design,
every decision can be traced backward to the requirements,
and conversely every requirement can be traceable forward
to architectural decisions and designs. Consequently, design
traceability and conformity as defined earlier is maintained
while avoiding ad hoc, accidental design and unjustified
efforts.

SAM also lays a foundation for a goal-directed, incre-
mental process of architectural refinement and analysis
that is both scalable and flexible. System components in
SAM interact with environment only via their communica-
tion interface. Moreover, the requirement specification deals
only with the interface with internal states of the compo-
nents encapsulated. This property has the following impli-
cations. Horizontally, at each design level, a system model
can be constructed and analyzed compositionally. Vertically

across design levels, lower level sub-architecture can be
built and analyzed incrementally and recursively.

Both top–down and bottom–up system development
approaches are supported. The top–down approach is used
to develop a software architecture specification by decom-
posing a system specification into specifications of compo-
nents and connectors and by refining a higher level
component into a set of related sub-components and connec-
tors at a lower level. The bottom–up approach is used to
develop an architecture specification by composing existing
specifications of components and connectors and by
abstracting a set of related components and connectors
into a higher level component. No matter what approach
is adopted, the consistency between critical system require-
ments and the system design at every step is systematically
enforced by architectural integrity rules within the SAM
model from beginning to end. Some examples of these
rules are:

• All architectural constraints must be consistent at any
design level, that is, the satisfaction of one constraint
must not lead to the violation of any other constraints.

• The behavior model for a component or sub-architecture
at a given level must satisfy the corresponding architec-
tural constraints imposed on the component or sub-archi-
tecture.

• A sub-architecture at design levelk 1 1 must inherit all
the ports associated with its corresponding component at
level k (Fig. 1).

• A sub-architecture at design levelk 1 1 must conform to
all constraints which its corresponding component at
level k is subject to (Fig. 1).

The central part of SAM is its specification model, illu-
strated in Fig. 1. A SAM model consists of three basic
elements:component modelsand their specifications (also
calledcomponent constraints), connector modelsand their
specifications (also calledconnector constraints), andarchi-
tectural constraintsorganized into multi-design levels. The
component models describe the behavior and communica-
tion interfaces (calledports) of the components. The
connectors specify how the components interact with each
other and, in turn, form thecomposition model.

The architectural constraints define requirements
imposed on the components and connectors, and are divided
into environment constraintsof each individual module
(component or connector) andcomposition constraints
involving multiple components. All connectors are defined
using only communication interfaces, which gives us the
flexibility to change the design of individual components
without voiding the analysis of the entire system.

The component ports also provide the linkage between
the operational design (components and connectors) and the
descriptive architectural constraints. In particular, system
constraints are specified by temporal formulas defined
over ports, which constitute the alphabet of the formulas.
All constraints are specified using ports only, no internal
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information about the components and connectors is
revealed. This arrangement is critical to achieve the goals
of incremental modeling and analysis described earlier, as it
ensures that the component and connector designs can be
treated as black-boxes in the construction, understanding
and analysis of system’s architecture.

The strong linkage is maintained during the whole
process of design. As shown in Fig. 1, when component
A3 is decomposed into a sub-architecture composed of
components B1, B2 and B3, all the ports of A3, i.e.port7
and port8, are inherited in the sub-architecture, and all
constraints defined on the component, e.g. constraintc2,
are inherited in the sub-architecture. This ensures interface
consistency between design models at different levels.

Formally, an SAM model consists of a set of compositions
C (a composition may correspond to a design level, or the
concept of sub-architecture) and a hierarchical mappingh.

SAM � (C, h), where

1. C� { C1, C2,…, Ck), andCi � { Cm, Cn, Cs} for eachCi,
where

(i) Cm is a set of components. For each
Cmj [ Cm;Cmj � �Smj ;Bmj�, where

• Smj is a property specification (component
constraints) of componentCmj. It is defined by a
set of RTCTL formulae.

• Bmj is the behavior model of componentCmj. It is
defined by a TPN. Let

CmjPORT� { pup [ Cmj :P ∧ zp > Cmj :T � B

∧ p z >Cmj :T � B} :

Cmj :PORT is the set of ports of componentCmj,
which defines the interface of the component (any
placep with an empty input pre-set,zp > Cmj :T �
B; is an input port, and any placep with an empty
post-set,p z >Cmj :T � B; is an output port). In
addition there is no common node between any
two components, i.e. for;Cmj ;Cmk [ Ci :Cm;

Cmj :P > Cmk:P� B; Cmj :T > Cmk:T � B:

For any constraintc, denoted byc:PORTthe set of
ports which are used as atomic propositions ofc.
Thus for eachc [ Smj ; the following holds

c:PORT# Cmj :PORT:

That is, a component constraint only uses ports that
belong to the component.

(ii) Cn is a set of connectors. For eachCnj [
Cn;Cnj � �Snj ;Bnj�; where

• Snj is a property specification (connector
constraints) of connectorCnj. It represents the
requirements on its functionality and is defined
by a set of RTCTL formulae.

• Bnj is the behavior model of connectorCnj. It is
defined by a TPN such that

[
Cnj[Cn

Cnj :P >
[

Cmj [Cm

Cmj :P\Cmj :PORT

0@ 1A � B;

[
Cnj[Cn

CnjT >
[

Cmj[Cm

Cmj :T

0@ 1A � B:
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Fig. 1. Framework of the SAM model.



The aforementioned conditions require that a
connector cannot use any internal nodes of a
component as its own nodes. Similarly, for each
c [ Snj ; the following condition holds:

c:PORT# Cnj :PORT:

The overall behavior (TPN) model of composition
Ci is defined by the union of all the component and
the connector models within it:

Ci :P�
[

Cmj[Cm

Cmj :P

0@ 1A <
[

Cnj[Cn

Cnj :P;

Ci :T �
[

Cmj [Cm

Cmj :T

0@ 1A <
[

Cnj [Cn

Cnj :T:

Let

Ci :PORT_EXT�
(

pup [
[

Cmj[Cm

Cmj :PORT∧ zp

> Ci :T � B ∧ p z >Ci :T � B

)
;

whereCi :PORT_EXTis the set of ports that are not
used by any connector. Ports inCi :PORT_EXTare
calledexternalports ofCi.
(iii) Cs is a set of architectural constraints. Each
Csj [ Cs is an RTCTL formula and it only uses
ports as its atomic propositions. Similar to compo-
nent constraints and connector constraints, the
atomic proposition is true at the momentt if:
• marking transition happens att , and
• the port contains a token in the new marking. In

the temporal structure S � �S;R;L�;S�
�M;wM� where M is a TPN marking, andwM

is the global time when the TPN entersM; R
is a binary relation onS, which is indicated by
firing transitions; and L is a mapping:
�M;wM� ! Ci :PORT. In addition, the following
condition is enforced:

∧
c[Smi < Sni < Cs

c: �1�

2. ;Ci [ C;;Cml [ Ci :Cm; h : Cml ! Cj ; j ± i; such that

• Cml :PORT� Cj :PORT_EXT; �2�
• Cml :Sml # Cj :Cs: �3�

In the aforementioned definition, expression (1) states that
all constraints should be consistent with each other, and it
establishes the (horizontal) constraint/specification consis-
tency condition. Eq. (2) states that when refining a compo-
nent into a sub-architecture, the sub-architecture must
inherit all ports of the component as all its external ports,

and it establishes thestructural consistency condition. Eq.
(3) states that when refining a component into a sub-archi-
tecture, the sub-architecture must conform to all constraints/
specifications which the component are subject to (beha-
vioral consistency). Such a consistency ensures that the
system requirements are met in every step of the design
process. Eqs. (2) and (3) together give thevertical (inter-
face) consistency conditions.

A brief introduction to TPN and RTCTL is given in
Appendix A.

3. Specifying the software architecture of a C2 system

A C2 system is a distributed modularized system. It
achieves mission success by executing a set of generally
accepted C2 functions in an asynchronous manner. These
functions include [22]:

1. Threat Detection: to collect threats data from various
sensors.

2. Discrimination: to distinguish real threats from decoys.
Sensor cueing, scheduling, and control are also an inte-
gral part of this function.

3. Identification and Tracking: to establish the identity
information of threats.

4. Threatening Assessment: to quantify the impact of each
threat.

5. Battle Planning: to make decisions on how to deal with
the identified threat, including contingency planning.

6. Weapon-to-Target Assignment(or Fire Assignment): to
determine the deployment of weapon systems to each
threat, including the assignment of any other necessary
resources such as sensor and communication equipment.

7. Engagement Control: to timely execute the decisions
made in (5) and (6).

8. Damage Assessment: to determine the outcome of the
engagement, i.e. whether a particular target has been
destroyed or not.

A typical structure of a tactic anti-air C2 system with two
levels of command and control centers is shown in Fig. 2,
which consists of one first-level command center (indicated
as C2 Center) and three second-level command centers
(indicated asSub-Centers). A pair of (C2 Center, Sub-
Center) may be (division, regiment) or (brigade, battalion).
They are geographically dispersed due to environmental and
survivability reasons, which contributes to the distributed
architecture of C2 organization.

3.1. Requirements of the C2 system

A C2 system is a typical real-time system, and over delay
in execution of any of its functions may incur severe results.
In this example, we will focus on the requirements of the
time delays in the execution of the system functions, and
how to construct an architectural model that meets these
delay requirements. These original user requirements
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include:

(R1) The system reaction time, i.e. the time delay from a
enemy intelligence message being received by any
sub-center to a fire command against the enemy
being issued by a corresponding fire unit, must be
less or equal to 45 time units.1

(R2) As a C2 system is a closed-loop system, a
constraint reflecting the time limitation for the
feedback of damage assessment results should be
included. This is captured by the requirement that
the time delay from a detailed firing assignment
scheme made by a sub-center to the result of the
damage assessment referred to the execution of this
scheme received by the same sub-center must be
less or equal to 20 time units.

(R3) As the bottleneck for information processing is
often located in component C2 Center, the
component is always asked to respond as soon as
possible. This is captured by the requirement that
the whole processing time for a group of messages
from the three sub-centers must be less or equal to
22 time units.

(R4) A C2 system is a real-time information processing
system. Obtaining targets’ information timely and
continuously is extremely important to win a war.
This is captured by the requirement that each Radar
Group outputs targets’ information periodically at
a period of 40 time units.

In order to simplify analysis, we also assume that all the
three sub-centers have identical topology and timing proper-
ties, and all the three fire units have identical topology and
timing properties.

3.2. Formalizing the C2 requirements

As pointed out in Section 2, all SAM architectural

constraints or specifications are formally defined on ports,
so we now introduce the top-level architecture of the
system, which also capture the profile of the SAM model
of the C2 system. As shown in Fig. 4, there are total 10
components: a C2 center (C2C), three sub-centers (SC1,
SC2, SC3), three radar groups (RG1, RG2, RG3), and
three fire units (FU1, FU2, FU3), and nine connectors in
the system. Each component has several communication
ports. For example, component C2C has three input ports:
C2C.R1, C2C.R2 and C2C.R3, and three output ports:
C2C.S1, C2C.S2 and C2C.S3. Through these ports the
components communicate with each other Table 1 presents
the legend for Fig. 3. Owing to the symmetry, we only
describe the ports and transitions for radar group I, C2
Center, sub-center I, and fire unit I.

Now we can formalize the timing-critical system require-
ments of the C2 system described in Section 3.1 using
RTCTL formulae based on the communication ports of
the top-level architecture shown in Fig. 3. First, requirement
(R1) limits the message transferring time delays between
input ports SYS.Ri of components SCi, and output ports
SYS.Fi of components FUi, i � 1, 2, 3, respectively, so it
is naturally specified by the following composition
constraint:2

pc1 : SYS:R1∧ SYS:R2∧ SYS:R3

! AF#45�SYS:F1∧ SYS:F2∧ SYS:F3�:

The next requirement, R2, in fact bounds the time taken
from requests being sent from output port SCi.SM to replies
arriving at input ports SCi.RI, i � 1, 2, 3, so it is naturally
specified by the following three environment constraints:

eci : SCi:SM! AF#20SCi:RI; i � 1;2; 3:

J. Wang et al. / Information and Software Technology 41 (1999) 451–467 455

1 Notice that the timing data in this example is artificial and does not
reflect actual data in a real system.

2 In RTCTL formulae there are four temporal operators: Fp (“eventurally
p”), Gp (“always p”), Xp (“nexttime p”), and pUq (“p until q”), and two
path quantifer:A (“for all futures”) andE (“for all futures”). Formulap!
AF#nq says that ifp is true, thenq will be guaranteed true within nextn
time units.

Fig. 2. A generic tactic anti-air C2 systems with two level command and control centers.



The third requirement, R3, also puts a limitation on the
message transferring time delay for component C2C
between three input ports C2C.Ri and three output ports
C2C.Si, i � 1, 2, 3, so it is naturally specified by the follow-
ing component constraints:

cc1 : C2C:R1∧ C2C:R2∧ C2C:R3

! AF#22�C2C:S1∧ C2C:S2∧ C2C:S3�:
The last requirement, R4, is on the output rate of

components RGi, i � 1, 2, 3. It is specified by the following
component constraint:

cci11 : RGi:MSG! A�G#30 : RGi:MSG�

∧�F#40RGi:MSG�; i � 1;2;3:

The importance of formalizing these original require-
ments is twofold: First, the global system requirements are
transformed into specific constraints on this particular archi-
tecture, more precisely, constraints imposed on the subsys-
tems and connections between the subsystems.

Second, by formalizing time-critical requirements in
terms of architectural constraints (based solely on the
component interfaces), it not only removes ambiguity in
the description, but also makes it easier to detect possible
inconsistency or conflict between different (competing)
requirements.

3.3. Defining component and connector specifications

We need to derive a set of intermediate constraints or
specifications to guide the design of each component and
each connector. The task of imposing original timing para-
meters on the functional components is a complex one, and
it mandates some careful engineering. As the original
constraints allow many possibilities for the intermediate
constraints, and engineers make what they consider to be
a rational selection, as the design goes on, they may find it is
necessary to make another selection [23].

As an important part of our SAM modeling and design,
the deriving of intermediate constraints should satisfy (hori-
zontal) constraint consistency condition [Eq. (1)], structural
consistency condition [Eq. (2)] and behavioral consistency
condition [Eq. (3)]. Moreover, in order to design a compo-
nent/connector independent of the rest of a system, it is
desirable that there is a set of constraints which completely
describe what properties of the component are expected by
its environment, and what properties the component/
connector expects from its environment. Such a property
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Fig. 3. Architecture of the tactic anti-air C2 system.

Table 1
Legends of partial ports in Fig. 3

Port Type Description

RG1.MSG Output Radar group 1 ready to send
target message to sub-center I

SYS.R1 Input A message from air radar
group I arrived

SYS.F1 Output A combat command to fire
unit I sent

SC1.SI Output Sub-center I ready to send
intelligence to command and
control center

SC1.RM Input Sub-center I received
command from command and
control center

SC1.SM Output Sub-center I ready to send
command to fire unit I

SC1.RI Input Sub-center I received result of
damage assessment from fire
unit

FU1.R Input Fire unit I received command
from sub-center I

FU1.S Output Fire unit I ready to send result
of damage assessment to sub-
center I

C2C.R1 Input Command and control center
received message from sub-
center I

C2C.S1 Output Command and control center
ready to send command to
sub-center I



is extremely expected when we conduct designs of complex
real-time systems. For our example, we may get the follow-
ing intermediate constraints:

cci14 : SYS:Ri ∧ SCi:RI! AF#8SCi:SI; i � 1;2; 3

�component constraints; for SC1; SC2 and SC3; respectively�;

ec4 : SC1:SI ∧ SC2:SI ∧ SC3:SI

! AF#25SC1:RM ∧ SC2:RM ∧ SC3:RM;

�environment constraint; for SC1; SC2 and SC3�;

cci17 : SCi:RM! AF#8SCi:SM; i � 1;2;3

�component constraints; for SC1; SC2 and SC3; respectively�;

cci110 : FUi:R! AF#8SYS:Fi; i � 1;2; 3

�component constraints; forFU1; FU2 and FU3; respectively�;

cci113 : FUi:R! AF#16FUi:S; i � 1; 2;3

�component constraints; for FU1; FU2 and FU3; respectively�

Now eci ; cci12; ec4 and cci17 completely describe the
timing requirements on component SCi, i � 1, 2, 3; cci110

and cci113 completely describe the timing requirements on
component FUi, i � 1, 2, 3; cc1 itself completely describes
the timing requirements on component C2C; and cci11 itself

completely describes the timing requirements on component
RGi, i � 1, 2, 3.

We also derive intermediate constraints to guide the
design of connectors as follows:

nci : RGi:MSG! AF#2SYS:Ri;

for connectori; i � 1;2; 3;

nci14 : SCi:SI! AF#2C2C:Ri ∧ C2C:Si ! AF#2SCi:RM;

for connectori 1 3; i � 1;2; 3;

nci17 : SCi:SM! AF#2FUi:R ∧ FUi:S! AF#2SCi:RI;

for connectori 1 6; i � 1; 2;3:

After this step, we gain a clear understanding about what
role each component or connector plays to satisfy the global
requirements. This also eases analysis as now we deal with
specific conditions imposed on each part of the system as
opposed to requirement to the system as a whole. This
feature becomes increasingly important as we approach to
more detailed levels of architectural design where the asso-
ciation between a low-level system component and a
system-wide requirement becomes much harder to grasp.

3.4. Constructing component and connector behavior
models

With the guidance of the constraints imposed on the
system components, we now turn to the internal representa-
tion of each component, i.e. how the component satisfy the
constraints imposed on it. First let us consider the compo-
nent of radar group 1. Each component of radar group is
composed of three air radars and a data processor. The
specification is:

1. Each radar periodically senses air targets, and all the
three radars share the same periods;

2. The data from the three air radar are fused at the proces-
sor;

3. The fused data are coded and sent to its corresponding
sub-center.

Fig. 4 shows the component operational model of radar
group I. Table 2 gives the description for all the nodes in
the figure.

The C2 center is composed of threeseats: two intelli-
gence seats, and onedecision-making seat. The behavior
specification of this component is as follows:

1. The two intelligence seats communicate with the deci-
sion-making seat through a common memory.

2. The messages from three sub-centers are dispatched to
the two intelligence seats.

3. The two intelligence seats are responsible for performing
fusion for these messages to achieve an overall
situation figure, and then makethreatening assessment
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Table 2
Legend for Fig. 4

Place Description

p101,p102,p103 Radar ready to sense air targets
p104,p105,p106 Radar data for fusion

Transition Description Firing interval

t101, t102, t103 Radar senses [30,30]
t104 Processor fuses data [2,4]
t105 Processor codes fused data [1,2]

Fig. 4. The operational model of component radar group I.



independently for each target and sends the results to the
decision-making seat.

4. The decision-making seat works on a scheme ofbattle
planning. The result is sent to the three sub-centers.

The behavior properties of this component are modeled by
TPN as shown in Fig. 5. Table 3 gives the description for all
the nodes in the figure. Notice that the required synchroni-
zation among messages from the three sub-centers has been
modeled by transitiont201, which does not fire until
messages from all the three centers have been received.

Now we turn to component sub-center I. Each sub-center
is composed of a intelligence seat and a decision-making
seat. The behavior specification of this component is as
follows:

1. The intelligence seat receives the message from its radar
group and conductstarget discrimination, identification
and tracking, and further conductsthreatening assess-
ment, then sends the result to the C2 center.

2. After receiving the scheme ofbattle planningfrom C2
center, the sub-center fuses it with related data in the
database again so as to form a detailed scheme of
weapon-to-target assignment. Further, the results are
sent to fire units.

Fig. 6 shows the component operational model of Sub-
Center I. Table 4 gives the description for all the nodes in
the figure.

Now we avert to component fire unit I. The specification
of this component is as follows:

1. When the scheme ofweapon-to-target assignment
arrives from its sub-center, it conductsengagement
control and sends fire command to weapons.

2. Then, it conductsdamage assessment, then feedbacks the
assessment results to its corresponding sub-center in
time.

The component behavior model of fire unit I is shown in Fig.
7. Table 5 gives the description for all the nodes in the
figure.

All connectors describe the information transferring
among system components, and their behavior models are
very simple. Figs. 8–10 show the model of connectors 1, 4,
and 7, respectively. All transitions (indicating the informa-
tion transferring) have the same static firing time interval of
[1,2]. Owing to the symmetry, connectors 2 and 3 have the
same model as connector 1, so connectors 5 and 6 as
connector 4, and connectors 8 and 9 as connector 7.

Once these component and connector behavioral models
are constructed, we have a complete system architectural
model (at this design level) both syntactically and semanti-
cally, which is also executable. To enforce the integrity of
the design against system requirements, it is important to
verify and/or validate that the components and their inter-
actions satisfy their respective constraints. The degree of
assurance that a system design can offer depend directly
on ability to verify such a conformance, and the applicabil-
ity of a modeling and design method depend directly on
whether such verification can be done incrementally and
systematically. We argue that our approach contributes to
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Fig. 5. The component operational model of C2 center.

Table 3
Legend for Fig. 5

Place Description

p201,p202 Ready for situation assessment
p203,p204 Ready for fusion and combat

planning

Transition Description Firing interval

t201 Dispatch intelligence message
to two staff seats

[1,2]

t202, t203 Two staff seats conduct
situation assessment

[3,5]

t204 Top commander seat conducts
information fusion and combat
planning

[5,6]

Fig. 6. The component operational model of sub-center I.

Table 4
Legend for Fig. 6

Place Description

p301 Waiting for evaluation of threat
p302 Intelligence seat available
p303 Waiting for decision-making of

fire assignment

Transition Description Firing interval

t301 Sub-center I conducts target
discrimination, identification
and tracking

[2,3]

t302 Sub-center I conducts
threatening assessment

[1,2]

t303 Sub-center I conducts fire
assignment

[4,6]



both of these two objectives for the reasons described
earlier. The verification method that helps to achieve these
objectives will be presented in Section 4.

3.5. Supporting incremental design of the C2 system

In this section, we further discuss the incremental nature
of SAM in the architectural modeling of the C2 systems.

As we have seen in Section 3.1, SAM interface provides
an information-hiding template for system composition, that
is, a specific design of a component can be “plugged-into”
the place of the corresponding specification to form a new
SAM model. Such a template naturally supports for incre-
mental design of distributed systems.

Two issues are discussed in this section. First, we discuss
support for exploring alternative designs, which is essential
for complex system design, where design conditions may
change over time or repeated experiments are necessary to
find a suitable design. Second, we show how to refine the C2
system architecture by incrementally replace component
models with more detailed architectural design. Such ability
is necessary to make a modeling approach scale up.

3.5.1. Replacing component C2 center with an alternative
design

If there are several seats included in a C2 center or C2
sub-center, as a reliable and powerful communication
media, a local area network (LAN) is often adopted in engi-
neering. For simplicity, the alternative design of the C2

Center considered here is still composed of two intelligence
seats and one decision-making seat, but differently, they are
connected with each other through a LAN instead of
through a common memory. LAN adopts a CSMA/CD
protocol.

The control structure for the alternative design of the C2
Center is as follows: The messages from three sub-centers
are first grouped and two copies of the grouped message are
sent to the two intelligence seats through LAN. The two
intelligence seats are responsible for performingfusion for
these messages to achieve a relatively higher precision and
overall situation figure, and then makethreatening assess-
mentindependently for each target and sends the results to
the decision-making seat through LAN. The decision-
making seat works on a scheme ofbattle planning. The
result is sent to the three sub-centers.

The component model for the alternative design of the C2
Center is shown Fig. 11. As we see, this model is in fact a
colored TPN. Here we use the colored TPN model is just to
give a compact presentation. It does not affect the semantics
of the component’s interface. Also we assume that the LAN
takes the same processing time for messages sent from the
two intelligence seats and the decision-making seat in the
same processing stage. Table 6 shows the legends of internal
places and transitions in this model. Notice thatt203, t204
andt208 are immediate transitions, that is, they will fire in 0
time units when they are enabled.

In order to be consistent, this alternative design must
satisfy all constraints that the old component design,
shown in Fig. 5, satisfies. As pointed out in Section 3.3,
constraintcc1 completely describes the timing requirement
of the system on component C2C. Therefore, the alternative
design is subjected to constraint

C2C:R1∧ C2C:R2∧ C2C·R3

! AF#22�C2C:S1∧ C2C:S2∧ C2C:S3�:
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Fig. 7. The component operational model of fire unit I.

Table 5
Legend for Fig. 7

Place Description

p401 Ready to send fire command
p402 Waiting for damage assessment

Transition Description Firing interval

t401 Fire unit I conducts engagement
control

[4,6]

t402 Fire unit I sends fire command [1,2]
t403 Fire unit I conducts damage

assessment
[5,7]

Fig. 8. Model of connector 1.

Fig. 9. Model of connector 4.

Fig. 10. Model of connector 7.



Then we can use the compositional verification algorithm
given in Section 4 to verify the new design.

3.5.2. Refining architectural design incrementally
The SAM model of C2 system built in Sections 3.2–3.4 is

in fact a high aggregated model. As the design proceeds, we
need to introduce more details of the system to the model,
which results in the refinement of components described in

Fig. 3. For example, component FU1 can be refined into a
sub-architecture composed of two low-level components,
engagement control (EC) and damage assessment (DA), as
shown in Figs. 12 and 13 (see Tables 7 and 8 legends). Note
that the refined model inherits all ports of component FU1 as
its external ports, as enforced by the structural consistency
condition. Further, the refined model need to satisfy all
constraints that FU1 suffers from, as enforced by the beha-
vioral consistency condition. From the SAM model we
know that component FU1 is subject to two constraints,
namely cc11 and cc14. Therefore, this sub-architecture design
must satisfy cc11 and cc14.
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Fig. 11. The internal representation of component C2 center.

Table 6
Legend for Fig. 11

Place Description

p201 Ready for situation assessment
p202 A station sensed the channel
p203 The channel is busy
p204 The channel is available
p205 The channel is idle
p206 The packet is on transmission
p207 The packet reached the

destination station
p208 Collision is detected

Transition Description Firing interval

t201 The messages from sub-centers
are grouped and communicated
to LAN

[1,2]

t202 Sense the channel [1,1]
t203 Transmission begins —
t204 The channel senses busy and

begin waiting
—

t205 Re-sense the channel [1,1]
t206 Detect collision [1,1]
t207 Transmission ends successfully [1,1]
t208 Collision happens —
t209 Wait for a back-off time [1,2]
t210, t211 Two intelligence seats conduct

situation assessment
[3,5]

t212 Decision-making seat conducts
information fusion and combat
planning

[5,6]

Fig. 12. Refinement of fire unit 1.

Table 7
Legends of new ports and transitions in Fig. 12

Port Description Type

EC.SM Ready to send command for
collecting firing results

Output

DA.RM1,2,3 Waiting for damage assessment Input

Transition Description Firing interval

t20 Fire unit I sends command of
collecting firing results

[1,2]



4. Verifying C2 system

The goal of verification is to show that system design
satisfies requirements. The modular nature of SAM model
and its emphasis on maintaining a strong correlation
between design and requirements provide a natural support
for incremental verification and for enforcing conformance
of the design to the requirements.

We have developed a constraint-driven refinement and
verification method for SAM architectural models. Across
design levels (interface and constraint conforming), sub-
architectures can be built and analyzed incrementally; at a
given design level, a system model can be constructed and
analyzed compositionally. Behavioral analysis is driven by
constraints verification and carried out through the reach-
ability analysis on TPN [9] and constraint-driven reduc-
tions. There are three noteworthy features of our
reachability analysis, which help control the complexity of
system verification:

1. The reachability analysis in SAM is compositional such
that each element (component or connector) in an archi-
tecture or sub-architecture can be analyzed individually.
Each analyzed element is then reduced to a constant-
sized Petri net based on the constraints imposed on the
element. The architecture is consequently viewed as a
composition of these small nets, and analyzed
accordingly.
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Fig. 13. Internal representation of refined fire unite 1.

Table 8
Legends of places and transitions in Fig. 13

Place Description

p401,p402,p403 Ready to send fire command
p404,p405,p406 Ready for evaluation of shot

effectiveness
p407,p408,p409 Ready for evaluation of shot

effectiveness

Transition Description Firing interval

t401 Fire unit I conducts
calculation of shot parameters

[4,6]

t402, t403, t404 Weapons (three in total) are
aimed at targets

[2,4]

t405 Fire unit I fires at targets [2,4]
t406, t407, t408 Sensors (three in total) get the

fire result
[1,2]

t409 Fire unit I conducts damage
assessment

[3,5]

Fig. 14. Behavior model for verifyingcc1.

Fig. 15. Behavior model for verifyingcc2.

Fig. 16. Behavior model for verifyingcc5.

Fig. 17. Behavior model for verifyingcc8.

Fig. 18. Behavior model for verifyingcc11 andcc14.



2. The analysis is incremental across different design levels
such that it is performed separately according to the
different abstraction levels.

3. The analysis is driven by satisfaction of architectural
constraints, which is monitored during the construction
of reachability tree, and terminated as soon as the goal is
reached. It avoids the generation of a complete reach-
ability tree and thus improves the efficiency.

The verification technique works on the following three
steps:

1. verifying module (component/connector) constraints;
2. verifying environment constraints with regard to each

individual module;
3. verifying composition level constraints involving

multiple modules through incremental structure reduc-
tion guided by proven constraints.

Later we show how the algorithm works on the top-level
design of the C2 example.

4.1. Verifying module (component/connector) constraints
(specifications)

To verify a module, we assign an initial marking to its
Petri net behavior model. Figs. 14–18 show the initialized
behavioral models for component constraints of C2C, RG1,
SC1, and FU1. The difference between these models and
those shown in Figs. 4–7 is that here initial markings are set
according to the constraints. For example as constraint cs1

puts a limitation on the message transferring time delay for
component C2C between three input ports C2C.Ri and three
output ports C2C.Si, i � 1, 2, 3, so in Fig. 14, we add a token
to each of the input ports C2C.Ri, i � 1, 2, 3.

We first consider the verification of component C2C. The
initial marking M0 is as shown in Table 9. Define marking
Me as in Table 10. Applying simple reachability analysis [9]
gives the time delay interval that the model takes from
markingM0 to Me, denoted byD(M0, Me), is [9,13], which
implies that interface specification cc1 is proven satisfied.

Using the same technique, constraints cc5 andcc8 can be
proven based on Figs. 16 and 17, respectively, and
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Fig. 19. Behavior model of connector 1.

Fig. 20. Behavior model of connector 4.

Fig. 21. Behavior model of connector 7.

Fig. 22. Behavior model for constraintec4.

Table 9

C2C.R1 C2C.R2 C2C.R3 p201 p202 p203 p204 C2C.S1 C2C.S2 C2C.S3
M0: 1 1 1 0 0 0 0 0 0 0

Table 10

C2C.R1 C2C.R2 C2C.R3 p201 p202 p203 p204 C2C.S1 C2C.S2 C2C.S3
Me: 0 0 0 0 0 0 0 1 1 1



constraints cc11 and cc14 can be proven based on Fig. 18.
Similarly, constraints cc6, cc7, cc9, cc10, cc12, cc13, cc15, and
cc16 can be proven satisfied.

Now we consider the constraint cc2. Reachability analysis
shows that the TPN model shown in Fig. 15 has infinite
markings as shown in Table 11. However the reachability
set has the following properties: (1) placesp101 t p107 are
safe; (2) as long as each of transitionst101, t102 andt103 fires
one time, a token is guaranteed to be deposited in port
RG1.MSG; and (3) at any moment when each of transitions
t101, t102 andt103 has firedn (n $ 1) times,n or n 2 1 tokens
must have been deposited in port RG1.MSG. Based on these
properties, it is easy to see that the net exhibits the same
behavior from marking (0 00 0 0 0 0i) to marking (0 0 0 0 0
0 0 i 1 1) as from marking (0 0 0 0 0 0 0j) to marking (0 0 0
0 0 0 0j 1 1), i $ 1, j $ 1, i ± j. We can easily derive that

the time for marking (0 0 0 0 0 0 1) to be reached from the
initial marking (11 0 0 0 0) is[34,36]. So the component
constraints cc2 is proven. Owing to the symmetry,
constraints cc3 and cc4 are proven satisfied.

Connector models are usually very simple and easy to
verify. Figs. 19–21 show the initialized behavior models
for connectors 1, 4 and 7, respectively. These connector
constraints, hence all connector constraints due to the
symmetry can be proven satisfied straightforwardly.

4.2. Verifying environment constraints

There are four environment constraints to verify. Figs. 22
and 23 show the initialized behavior models for constraints
ec4 and ec1. Using the same technique as in verifying
module constraints, we can easily prove these two
constraints, hence all environment constraints due to the
symmetry.

4.3. Verifying composition constraints

As a composition constraint is defined on several compo-
nents, the verification model for a composition constraint is
a composition of several components. To control the
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Fig. 23. Behavior model for constraintec1.

Table 11

p101 p102 p103 p104 p105 p106 p107 RG1.MSG
M4i: 1 1 1 0 0 0 0 i
M4i11: 0 0 0 1 1 1 0 i i � 0, 1, 2,…
M4i12: 0 0 0 0 0 0 1 i
M4i13: 0 0 0 0 0 0 0 i 1 1

Fig. 25. Illustration of component reduction—Case 2.

Fig. 24. Illustration of component reduction—Case 1.



complexity of verification, we are going to reduce a com-
ponent that appears in the verification model for some
composition constraint to a TPN with very small size. The
basic idea of the reduction is to use one or more new transi-
tions to connect input and output ports directly, while delete
the internal part of the component. The reduction is guided
by component constraints. We may have two classes of
component constraints. The first class of component
constraints indicates the timing requirement for message
transfer between a component’s input ports and output
ports, such as cc1, cc5–cc16. The second class of component
constraints deals with the requirements for the uncondi-
tional output properties of a component, such as cc2–cc4.
Figs. 24–27 show four typical cases of components reduc-
tion based on their component constraints, where the first
three cases are based on the first class of component
constraints, and the last case is based on the second class
of component specifications.

Now we consider the verification of the only compose
specification of the C2 example, pc1. Except for the three
radar groups, all components are to be involved to verify the
compose constraint. To reduce the complexity, based on
their component constraints, we simplify the behavior
models of components C2C, SC1 and FU1 to those as
shown in Fig. 28(a)–(c), respectively. Components SC2,
SC3, FU2 and FU3 can be similarly simplified due to the
symmetry among all the sub-center and fire unit modules.
We then obtain a simple behavior model for the verification
of compose constraint pc1 as shown in Fig. 29. By reach-
ability analysis, we can obtain that the time for marking at
which places SC1.SM, SC2.SM and SC3.SM are marked to
be reached from the initial marking is [2, 34], which implies
that constraint pc1 is proven satisfied.

4.4. Violation of constraints

The aforementioned C2 system example illustrated the
case that the system design satisfies constraints. If, during
verification, a timing constraint is found being violated by
the model of architectural design, we need to modify design
model. In other words, redesign the system by modifying the
component model(s) that violated the constraint. The modi-
fications may include changing the firing time interval,
removing some transitions, or rearranging the control struc-
ture of the component. Each change corresponds to a speci-
fic modification on the realization and semantics of the
system. As the SAM model tightly integrates architectural
constraints with every component of the system at every
design level, it is easier to make such modifications.

For example, suppose that the component constraint cs1

is:

C2C:R1∧ C2C:R2∧ C2C:R3

! AF#12�C2C:S1∧ C2C:S2∧ C2C:S3�:
It indicates that the whole processing time of the component
C2C is required to be less than or equal to 12 time units
instead of 22 time units as given previously. Then we might
find that the component C2C shown in Fig. 5 violates the
constraint. From the viewpoint of design, the simplest way
to eliminate the violation is to reduce the upper bounds of
the firing time intervals of some transitions. For example,
we can change the firing time interval of transitiont204 to
[3, 4], which will ensure the consistency between the design
and the requirement. As a tradeoff, however, we have to
increase the processing speed of the top command seat by
over 33%.
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Fig. 26. Illustration of component reduction—Case 3.

Fig. 27. Illustration of component reduction—Case 4.



5. Summary

In this article, we presented a software architecture SAM
through a C2 system. Our objectives of this article are to
introduce the main features of SAM without discussing the
details of the underlying formal foundation and methodolo-
gical issues (that are to be published elsewhere) and to
provide a useful example.

Although SAM has shared similar philosophies and goals
as several other software architecture approaches such as
formal notation, executability, and modularity; SAM has
many distinct and unique features, including:

1. A well-defined unified formal model integrating two well
known complimentary formal notations (temporal logic
and Petri nets),

2. A constraint-driven design approach to maintain consis-
tency and completeness horizontally (among modules in
the same composition) and vertically (between modules
at the different abstraction levels),

3. A compositional and reductive verification technique.

SAM is not an architecture description language such as
Wright or Rapide [2] and thus does not provide any specific
syntacticalsugar indefininginterfaces.SAMputsmoreempha-
sis on the process of specifying and verifying software archi-
tectures rather than the product (the representation)ofsoftware
architectures. As a result, SAM offers the following benefits:

1. Flexibility—we can easily extend or change the under-
lying formal specification notations while maintaining
the SAM overall framework. For example, we used a
high-level Petri net model called predicate transition

nets in specifying several well-known architectural
connectors recently [25]. By using first order temporal
logic and high-level Petri nets, a SAM component/
connector specification (S, B) can express almost all
interface constituent types (with the exception of the
private constituent) in Rapide: public—input ports
(input places in B),extern—output ports (output places
in B), constraint—property specificationS, and beha-
vior—Petri net model B.

2. Analyzability—existing analysis techniques from the
underlying formal methods can be directly used to
analyze SAM software architecture specifications.

SAM is under constant evolution. Currently, we are
working on several directions to improve and extend
SAM. Firstly, we will use high-level Petri nets and
first-order temporal logic as our formal foundation to
enhance SAM’s expressive power. For example, it will
enable us to handle the specification and verification of
requirements that require multiple input tokens in a
component. Our earlier work on integrating high-level
Petri nets and temporal logic [15] establishes a good
foundation to achieve this goal. Secondly, we will
develop more heuristics and guidelines to apply SAM
to develop architecture specifications. As far as we
know, there are very few existing results dealing with
a general approach to develop software architecture
specifications. Thirdly, we will formalize and automate
our current compositional and reductive verification tech-
nique. When we adopt high level Petri nets and first
order temporal logic, we will further explore and adapt
formal proof techniques such as the work by Abadi and
Lamport [19–21]. Fourthly, we will explore the possibi-
lity of direct code generation from an architecture speci-
fication. We will adapt our results on generating CC11
and Java code skeletons from Petri nets [24,26]. Fifthly, we
are examining the applicability of SAM in terms of other
system properties such as security and dynamic configur-
ability. Lastly, we are constructing a software environment
to support the use of SAM.
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Appendix A. A brief introduction to underlying formal
methods of SAM

In this appendix, we give a brief introduction to TPN and
RTCTL, which are two underlying formal methods of our
SAM model.

A.1. Time Petri nets

A TPN is a tuple (P, T, I, O, M0, SI) where:

1. P is a finite nonempty set of places;
2. T is a finite nonempty, set of transitions; it will appear in

the sequel that it may be convenient to view it as an
orders set;

3. I is the backward incidence function, whereN is the set of
nonnegative integers;

4. O is the forward Incidence function;
5. M0 is the Initial Marking function, (P, T, I, O and M0

together define a Petri net);
6. SI is a mapping called static interval,SI : T !

Q* × �Q* < ∞�; where Q* is the set of positive real
numbers.

Let SI�t1� � �as
;bs� for some transitionti ; then the inter-

val of numbers�as
i ;b

s
i � is called the static firing interval of

transitionti the left boundas
i the static earliest firing time

(state EFT for short), and the right boundbs
i the static latest

firing time (static LFT for short).
A stateS of a TPN is a pairS� �M; I � consisting of a

markingM and a firing interval setI which is a vector of
possible firing times. The number of entries in this vector is
given in the number of the transitions enabled by marking
M.

Transitionti is firable from stateS� �M; I � at timet 1 u
iff:

1. ti is enabled by markingM at timet , i.e. �;p��M�p� $
I �ti ;p��;

2. The relative firing timeu to the absolute enabling timet ,
is not smaller than the FET of transitionti and not greater
than the smallest of the LFT’s of all the transitions
enabled by markingM, i.e. EFT ofti # u # min {LFT
of tk}, wherek ranges over the set of transitions enabled
by M.

Assume that transitionti be firable at timet 1 u from
stateS� �M; I �. Then the stateS0 � �M 0

; I 0� reached fromS
by firing ti at the relative timeu can be computed as follows:

1. M 0 is computed, for all placesp, as�;p�M 0�p� � M�p�2
I �ti ;p�1 O�ti ;p�;

2. I 0 is computed in three steps:

• Remove from the expression ofI the intervals that are
related to the transitions disabled whenti is fired.

• Shift of the valueu towards the origin of times all
remaining firing intervals, i.e. the intervals that
remain enabled and so remain inI, and truncate
them, when necessary, to nonnegative values.

• Introduce in the domain the static intervals of the new
transitions enabled.

A.2. Real-time computational tree logic

An RTCTL Formula is defined as:

1. Each atomic propositionP is a formula.
2. If p, q are formulae, then so arep ∧ q and : p.
3. If p, q are formulae, then so areA(p U q), E(p U q), and

EX p.
4. (4) If p, qare formulae andk is any natural number, then

so areA�pU#kq�andE�pU#kq�:
A formula of RTCTL is interpreted with respect to a

temporal structureS � �S;R;L�, whereS is a set of states,
R is a binary relation onS that is total (so each state has at
least one successor), andL is a labeling which assigns to
each state a set of atomic propositions, those intended to be
true at the state. Intuitively, this temporal structureS repre-
sents the reachability graph of the architecture. A full-path
x� s0; s1; s2;…in S is an infinite sequence of states such
that�si ; si11� [ R for eachi; intuitively, a full-path captures
the notion of an execution sequence.
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