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This paper presents an algorithm of polynomial complexity to derive the throughput of a discrete event
system via stochastic Petri net (SPN) models. The concept of flow nets, a subclass of SPN, is
introduced to model a class of discrete event systems. The mathematical model for the throughput of
flow nets is given. For a structurally non-competitive and acyclic flow net, the solution algorithm
proceeds in four steps. First, divide the places and transitions into groups according to some rules.
Next, list the flow equilibrium equation for each place, which shows the relation among the average
flows of its input and output transitions. Then, deduce the relation of the average flow of any non-
source transition to that of all source transitions. Finally, determine the throughput of the model. By so
doing, we significantly reduce the size of the linear programming problems. For a structurally
competitive and cyclic flow net, a procedure is proposed to convert it to a structurally non-competitive
and acyclic one in the sense of equivalent throughput. Besides, the paper also shows how to transform
an SPN with shared resource to a flow net. An assembly system is used to illustrate the application of
the technique for the analysis of throughput.
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1. Introduction

Petri nets have been used to model various discrete event systems.1,2,3,4,5 Because of their
ease to model such features as parallelism, contention and synchronization, they have
gained more and more applications. Basic Petri nets lack a temporal description and
therefore fail to represent any performance measures. Introduction of time into a
transition or a place increased both the modeling power and the complexity of the net
analysis. When exponentially distributed times are associated with transitions, the
extended Petri nets are called Stochastic Petri Nets (SPN’s). It has been proved that
SPN’s are isomorphic to Markovian processes. 4,6,7

In general, the solution techniques for an SPN rely on simulation of the net operation
or enumeration of all reachable states, thus the state explosion problems are quickly
encountered as the net size or the number of initial tokens representing, e.g., jobs and
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resources, in the places increases. This has been a major drawback and has limited the
application of such models for practical system specification, modeling and analysis.

 SPN models of real systems often have tokens representing jobs, users, processors,
processes, or stations in a system.8,9,10 Knowing the maximum rate at which such entities
can cycle through the system is a critical measure of the system’s performance. A fast
(with polynomial complexity) determination of a tight upper bound on the throughput
would significantly increase the usability and applicability of the SPN model.11

Some work on determining the maximum throughput of an SPN has been done. In the
work by Florin and Natkin4 a special network structure was assumed. This structure
limited the action of some sub-network by a limit place, much as the method of stages or
the single server model uses a control place with a single token to limit the number of
tokens in the subnet to one. In their model, the transitions that start the subnet are enabled
by a special control place that limits the number of times the transitions can fire. Thus,
until the tokens go through the subnet and a token is placed back into the control place,
the input to the subnet is blocked. This is then used to show that such nets have a
maximum average throughput.

Campos et al.12,13 analyzed the ergodicity and characterized the throughput bound for
a subclass of timed and stochastic Petri nets, interleaving qualitative and quantitative
theories. The considered nets represent an extension to marked graphs, and are defined as
nets having a unique consistent firing count vector, independently of the stochastic
interpretation of the net models. Upper and lower throughput bounds are computed using
linear programming. The bounds depend on the initial marking and the mean values of the
delays but not on the probability distribution.

All the previously published work deriving the performance bounds using Petri nets
has two common features: (1) The net model is strongly connected, or non-strongly
connected marked graph; and (2) The solution is based on linear programming.

Different from the previous work, this paper deals with the performance bounds of a
discrete event systems via a particular structure SPN models, called flow nets. Flow nets
are a special case of the well-behaved blocks14 in terms of the net structures. Such flow
nets can better model certain discrete event systems for throughput analysis than strongly
connected SPNs and marked graphs. In a flow net, transitions are divided into two
subsets, i.e., source transitions and non-source transitions, the former representing
external task arrivals while the latter representing internal task processing. Since the
throughput is determined by the structure and each unit’s processing rate of the system,
independent of the rates of the arrivals of external tasks, source transitions are defined to
be unconditionally firable or having infinite liveness bound. A fast algorithm for
determining the throughput of a flow net is proposed. For a structurally non-competitive
and acyclic flow net, the algorithm proceeds in four steps: (1) Divide the places and
transitions into groups according to some rules; (2) List the flow equilibrium equation for
each place, which shows the relation among the average flows of its input and output
transitions; (3) Simplify the constraints; And (4) solve a linear programming problem for
the throughput of the model. If a system’s SPN model is structurally competitive and
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cyclic flow net, or has initial tokens, we show how to equivalently transform it to a
structurally non-competitive and acyclic one in terms of the same throughput.

The paper is organized as follows. Section 2 introduces the concept of a flow net, and
presents the general description of the throughput of a flow net. In Section 3, we present
our fast throughput analysis technique. Section 4 gives an example to illustrate the
practical use of our technique.

2. Throughput of Flow Nets

In this section, we first briefly introduce stochastic Petri nets, then present the concept of
flow nets, and finally give a general throughput model based flow nets.

2.1. Stochastic Petri Nets

A Petri net1 is a bipartite directed graph in which the nodes are called places and
transitions. A Petri net is a 4-tuple (P, T, I, O), where P is the set of places (|P| = m), T is
the set of transitions (|T| = n, P ∩ T = ∅, P ∪ T ≠ ∅), I (O) is the pre- (post-) incidence
function representing the input (output) arcs I: P × T  N =  {0, 1, 2, . . .} (O: P × T 
N). The pre- and post-sets of a transition t ∈ T are defined as •t = {p | I(p, t) > 0} and t• ={
p | O(p, t) > 0}, where I(p, t) and O(p, t) are the multiplicities of arcs (p, t) and (t, p),
respectively. The pre- and post-sets of place p ∈ P are defined as •p = {t | O(p, t) > 0}
and p• = { t | I(p, t) > 0}, respectively. A = {(x, y) ∈ (P × T) ∪ (T × P): I(x, y) > 0 or O(x,
y) > 0)} is the set of all the directed arcs in the net.

A function M: P  N (usually represented in a column vector form) is called a
marking. Markings represent (distributed) states. A marked Petri net (P, T, I, O, M0) is a
Petri net with an initial marking M0. A transition t∈ T is enabled in M if and only if for
any p ∈ P, M(p) ≥ I(p, t). A transition t enabled in M can fire and thus yield a new
marking M′(p) = M(p) − I(p, t) + O(p, t) for any p ∈ P. This is denoted by M [ t > M′.

A stochastic Petri net11 is obtained by associating each transition with an
exponentially distributed firing time, which represents the duration of event or activity
modeled by the transition, to the underlying Petri net. Formally, a marked stochastic Petri
net is a 6-tuple Z = (P, T, I, O, M0, Λ), where Λ: T → R+ (the set of non-negative real
numbers) and λk ∈ Λ is the firing rate of transition tk ∈ T.

Two transition firing policies are discussed by Ajmone Marsan et al.15 Under the
preselection policy, when a new marking is entered, the firing transition is selected
according to a specified distribution. Once the choice is made, the firing delay is sampled
from the distribution associated with the selection transition, and the marking changes
after the delay. Under the race policy, all transitions sample a firing delay when a new
marking is entered, and the minimum sampled delay determines both the transition that
fires and the sojourn time in the marking. In this paper, the firing of transitions that do not
compete for tokens from places is assumed to obey the race policy, and the firing of
transitions that compete for tokens from places is assumed to obey the preselection policy.

2.2. Flow Nets

As shown in Figure 1, a flow net is an SPN such that
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1. There are m + q transitions and n + s places, where t1, t2, ..., and tq are
unconditionally firable transitions, called source transitions, and others called non-
source transitions; and places p1, p2, ..., and pq have no output transitions, called
destination places, and other places called non-destination places. Denote T0 = {t1,
t2, ..., tq} and P0 = { p1, p2, ..., pq}.

2. Denote M = (M1, M2), where M1= (m(p1), m(p2), …, m(ps))
T and M2 = (m(ps+1),

m(ps+2), …, m(ps+n))
T. In initial marking, 1

0M  = 0. And no matter how many times

source transitions fire, M1 = 0 when no source transition is enabled.

Figure 1. A multiple-input-transition-multiple-output-place block.

 Flow nets are confined to the discrete event systems in which the internal task
processing can be modeled without the help of the initially marked places that often
model explicitly availability of resources. In many applications, the firing speed of a
transition can reflect not only the quality of a resource but also the quantity of the
resources. The structure of a flow net can include structures of choice, synchronization,
and concurrent operations. One example is given in Figure 2.

t1 t2 tq

…

…
p1 p2 ps

Figure 2. A flow net example with choice, synchronization and concurrency.
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2.3. Throughput of Flow Nets

Consider an SPN with the properties of flow nets. Suppose that the firing rates of non-
source transitions are constant. If the firing rates of all non-source transitions are high
enough compared with that of any source transition, the input tokens which are generated
by the firing of source transitions will be moved into destination places in time by the
firings of non-source transitions, thus no token accumulates in any non-destination place.
But with the increase of the firing rates of some source transitions the inputs will
inevitably queue in pre-place(s) of some non-source transition whose firing rate is low,
and the queue will grow infinitely over time. The transition is said to be saturated, i.e., it
is enabled continuously as long as its input queue forms. When a non-source transition is
saturated with reference to some specific source transition, the token processing rate of
the whole net, corresponding to a system’s throughput, keeps constant, even through the
source transition’s firing rate continues to increase while other source transitions’ firing
rates keep invariant.

Denote by f(a, b) the average token flow rate on arc (a, b) ∈ A, where A is the set of
all arcs in the net. Let f(a, b)  = 0 for all (a, b) ∉ A. Then the equilibrium of token flow at
each place is of the form:

 0\   ),,(),(),(),( PPptpftpItpftpO
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Denote the average token flow rate through transition ti ∈ T by fi. It is easy to find that the
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fk is subject to
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Because source transitions are unconditionally firable, their average token flow rates are
just their firing rates. According to the above analysis, the solution for the throughput of a
flow net is converted into the following optimization problem:

 max λ1 + λ2 + … + λn

s.t.  k
Tt

kij
Tt

ji ftpIftpO
kj

∑∑
∈∈

= ),(),( , i = s + 1, s + 2, …, s + n, (5)

fi ≤ λi, i = q + 1, q + 2, ..., m.

This is a linear programming problem with n + m − s constraints.
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3. Fast Throughput Analysis

In this section, we first present a fast technique for the throughput analysis of structurally
non-competitive and acyclic flow nets, then show how to equivalently transform a
structurally competitive and cyclic flow net, or an SPN with initial tokens, to a
structurally non-competitive and acyclic flow net in terms of the same throughput.

3.1. Structurally Non-competitive and Acyclic Flow Nets

A flow net is said to be structurally non-competitive if there is at most one output
transition for any place, i.e., ∀ pi ∈ P, |pi

•| ≤ 1. Otherwise, it is said to be structurally
competitive.

A flow net is said to be structurally cyclic if there exists a set of transitions x1, x2, …,
and xh and a set of places y1, y2, …, and yh, h > 1, such that

 xi ∈ yi
•, i = 1, 2, …, h,

 yi+1 ∈ xi
•, i = 1, 2, …, h − 1,

 … …
 y1∈ xh

•.

Otherwise, it is said to be structurally acyclic. In a structurally acyclic flow net, no impact
on a place can be made by places in its post-set.

For a structurally non-competitive and acyclic flow net, a structural partition can be
obtained according to the following equations:

Pj1 = {pi ∈ P | pi
• = ∅},

Tj1 = { ti ∈ T | ti
•⊆ Pj1},

Pj2 = { pi ∈ P \ Pj1 | pi
• ⊆ Tj1},

Tj2 = {ti ∈ T \ Tj1 | ti
• ⊆ (Pj1 ∪ Pj2)},

Pj3 = {pi ∈ P \ (Pj1 ∪ Pj2) | pi
• ⊆ Tj2},                                                           (6)

Tj3 = {ti ∈ T \ (Tj1 ∪ Pj2) | ti
• ⊆ (Pj1 ∪ Pj2 ∪ Pj3)},

… … …
Pjr = {pi ∈ P \ (Pj1 ∪ Pj2 ∪ … ∪ Pj,r-1) | pi

• ⊆ Tj,r-1},

Tjr = {ti ∈ T \ (Tj1 ∪ Tj2 ∪ … ∪ Tj,r-1) | ti
• ⊆ (Pj1 ∪ Pj2 ∪ … ∪ Pj,r-1)}.

where, r is the minimum integer that satisfies

jk

r

k

PP ∪
=

=
1

 (7)

Let

Pi = Pj,r−i+1, i = 1, 2, …, r, (8)

Ti = Tj,r−i+1, i = 1, 2, …, r. (9)
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Then we can describe a structurally non-competitive and acyclic flow net simply as shown
in Figure 3, where P0 = Pr, T

0 ⊆ T1. In order to obtain the flow equilibrium equation we
reshow the relationship between Pi (i > 1) and each Tj in Figure 4:

T1

T2 Pi Ti

Ti-1

…

Figure 4. Relationship between a Pi (i > 1) and each Tj.

For any tk ∈ Ti, if pj ∈ Pi and I(pj, tk) > 0 then tk must be the sole output transition of pj.
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For i = 2, the relationship between the average flow rate of any transition in set T2 \ T
0

and the firing rates of transitions in set T1 (⊆ T0) can be determined by Eq. (10). For i = 3,
the same holds for T3 \ T0 and T2. Continue this way till i = r. We thus obtain the
relationship between the average token flow of each non-source transition and the firing
rates of source transitions within a limited number of steps. Therefore, an algorithm for
the throughput analysis of a structurally non-competitive acyclic flow net is derived as
follows:

1. Divide the structure of the flow net according to Eqs. (6) and (7) and find P1, T1, P2,
T2, …, Pq and Tq according to Eqs. (8) and (9).

2. List the flow equilibrium equation for each place in set P1, P2,…, and Pq-1 according
to Eq.(10). These equations can be formatted as the following recursive equations:

fi = Ci1f1 + Ci2f2 + … + Ciqfq , i = q + 1, q + 2, …, q + n.

Figure 3.  Sketch of a structurally non-competitive and acyclic flow net.

T1 T2 T3 TrP1 P2 P3 Pr

…
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where, Ci1, Ci2, …, and Ciq are constant coefficients. Since source transitions are
unconditionally firable ones, tokens flow through them at their firing rates. Thus the
above equations can be written as

fi = Ci1λ1 + Ci2λ2 + … + Ciqλq , i = q + 1, q + 2, …, q + n. (12)

3. It follows from Eq.(12) and fi < λi, i = q + 1, q + 2, …, q + n that

C C C

C C C
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q q q q
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Reduce all the redundant equations. If any two or more rows of the matrix C are
identical, then just preserve the equation with the least firing rate in the column
vector on the right. Suppose the number of inequalities is nc (≤ n).

4. Solve the linear program problem that has nc constraints with the objective function
defined in Eq. (5) to find the throughput of the flow net.

Remark: As we know, for most PN models of practical systems, ∀ (p ∈ P, t ∈ T) I(t,
p) is either 1 or 0, so is O(p, t). Thus in Eq. (13), each coefficient Cij, i = q + 1, …, q + n,
j = 1, …, q, is either 1 or 0. It results that nc ≤ min{2q−1, n}. Since q indicates the number
of independent input sources of a system, usually we have q << n and 2q−1 < n.
Particularly, in the case of q = 1 (i.e., the modeled system is a single input system. Many
systems drop into this case.), we have nc = 1, then the maximum processing capacity is
obtained immediately. Therefore, compared with the conventional algorithm given by Eq.
(5), our algorithm is more efficient.

3.2. Analysis of a Class of Structurally Competitive and Cyclic Flow Nets

Consider an SPN with a loop (subnet) L shown as Figure 6(a). In loop L, transitions x1, x2,
…, and xh are connected in series through places w1, w2, …, and wh to form a loop.
Tokens generated by the firing of the source transition x0 move into subnet L, and depart
from L by the firing of transition xa. When a token arrives in place wh, both xa and xb are

enabled immediately. In other words, they compete for tokens in place wh, thus there
exists a problem of decision-making. The firing of xb results in the same token being
processed again by the subnet, so we call transition xb a feedback transition, and call other
elements (places and transitions) forward transitions. Without loss of generality, we
assume that the firings of xa and xb obey the preselection policy, and denote the firing
probability of xa by α, and that of xb by 1− α.

In order to analyze the processing capacity of such an SPN, a practical method is to
make an equivalent transformation to turn the SPN into one with non-competitive and
acyclic structure. Since x1, x2, …, and xh are connected in series, the processing capacity
is limited by the one with the smallest firing rate, say xk, for example. Thus in the sense of
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throughput, subnet L in Fig. 5(a) can be transformed equivalently to that in Figure 5(b).
From the flow equilibrium principle hold the following equations for places w0 and wh:

f(w0, xk) = f(x0, w0) + f(xb, w0),

f(xk, wh) = f(w0, xk) = f(wh, xa) + f(wh, xb),

f(wh, xa) / f(wh, xb) = α.

Then by noting f(xb, w0) = f(wh, xb), we can obtain:

f(w0, xk) = α−1 f(x0, w0),     (14)

f(wh, xa) = α f(xk, w0). (15)

Eq. (14) shows that the existence of feedback transition xb results in the increase of the
processing burden of xk, and thus decreases the throughput of the SPN. According to Eqs.
(14) and (15), Fig. 5(b) can be converted into Fig. 5(c) from the analysis view point. In
Fig. 6(c) O(w0, x0)= α−1 and O(wh, xh) = α, which are not integers. Strictly speaking, Fig.
6(c) is no longer a Petri net. However, this way allows a structurally competitive and
cyclic net to be transformed into a structurally non-competitive and acyclic one. Then the
algorithm can apply to it without difficulty.

x1

L

w0
xhx2

xb

xawhw1
x0

…
w2 {α} …

{1−α}

(a) Original net.

… …
x0 xk xa

xb

w0 wh

… …
x0 xk xaw0 whα-1{α}

{1−α}

α

 (b) Equivalent net 1.             (c) Equivalent net 2.

Figure 5. Reduction of a flow net with a loop.
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Using the similar method, we can reduce the net shown in Figure 6(a) where two
loops share the same feedback transition, to the acyclic net shown in Figure 6(b).

The method can also be extended to flow nets with many other kinds of multiple
loops. As examples, we consider the three cases shown in Figures 7−9. Figure 7 shows a
flow net with two totally independent loops. We can apply the equivalent transformation
technique twice to open the two loops. Figure 8 shows a flow net with two loops sharing
forward elements, in which loop L1 is embedded in loop L2. We can first make an
equivalent transformation for L1, and then do the same for L2. Figure 9 shows a flow net
with two loops not only sharing the same forward elements but also sharing the same
competitive resource. In this case, we replace the shared place with a simple net which is
composed of two places and an immediate transition, as shown in Figure 10(b). Then the
modified model takes the form of model shown in Figure 8.

{α}

{1−α}

x1

x2

x3

x4

x5

x6

x7

…

… …

α

x1

x2

x3

x4

x5 x7

…

…

α-1

α-1

…

(a) Original net.

(b) Equivalent net

Figure 6. Reduction of a flow net with two loops sharing a feedback transition.
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… ……

… ……

L2

L1

Figure 7. An SPN with two independent loops.

… ………

L1

L2

Figure 8. An SPN with two loops sharing the same forward elements.

… ……

L1

L2

w

Figure 9.  An SPN with two loops sharing the same competitive resource.

w

Figure 10. Separate the shared place in Figure 9 to two places connected
                  by an immediate transition.
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3.3. Stochastic Petri Nets with Initially Shared Resources

As we pointed out in Section 2.2, flow nets are confined to the discrete event systems in
which the internal task processing can be modeled without the help of the initially marked
places. However, there are many systems to be modeled with the help of the initially
marked places to reflect explicitly availability of resources. In order to analyze the
throughput of this class of systems, we show how to transform an SPN with initially
shared resource to a flow net in this section.

Figure 11(a) shows a typical case of SPN’s with initially shared resources. Two
events, modeled by transitions x5 and x6, share a resource modeled by the token in place
w0. Immediate transitions x3 and x4, model the beginning of the two events. Let the firing
rates of transitions x5 and x6 be λ5 and λ6, respectively. When the equilibrium of token
flow is reached, the firing probability of transition x3, denoted by α, is

α = f(w1, x3) / (f (w1, x3) + f (w2, x4)),

and the firing probability of transition x4 is 1 − α. Therefore, we can equivalently
transform the net shown in Figure 11(a) to the net shown in Figure 11(b) in terms of the
same throughput, where the firing rate of transition xa is αλ5 and that of transition xb is (1
− α)λ6. After the transformation, we can apply the technique given in Section 3.1 to
analyze the throughput bound of the SPN.

4. Application to a Discrete Event System

Consider a system composed of 3 machines, 2 inspectors, 1 assembler and 2
disassemblers (Figure 12). The system receives two types of parts (A and B) as inputs,
and after processing the input parts, one A-part and two B-parts are assembled into a final
product. The process is described as follows: raw parts arrive in pairs, A-parts are
processed by machines 1 and 2 in series, while B-parts are processed by machine 3.
Processed A- and B-parts are finally assembled by an assembler. Two inspectors are
responsible for quality control. Inspector 1 examines A-parts after they are processed by
machines 1 and 2. If they don’t satisfy the quality requirements, they are sent back to be

x1

x2

x3

x4

x5

x6

w0

w1

w2

w3

w4

…

… …

…

x1

x2

xa

xb

w1

w2

…

… …

…

(a) Original net. (b) Equivalent net.

Figure 11.  Reduction of an SPN with shared resource.
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re-processed by machines 1 and 2 in series. If so, they sent for assembly. Inspector 2
examines the assembled products. If an assembled product satisfies the quality
requirements, it is unloaded from the system as a final product; otherwise, it is
disassembled either by disassembler 1 or 2 depending upon their status. Disassembler 1
generates A-parts to be sent back to machines 1 and 2 and two B-parts to assembler,
respectively. Disassembler 2 generates A-parts to be sent back to machines 1 and 2 and
two B-parts to machine 3.

Machine 1 Machine 2 Inspector 1

Machine 3

Assembler Inspector 2

Disassembler 1

Disassembler 2

Parts of
type 2

Parts of
type 1 Uninstalled

      Figure 12. A discrete manufacturing system.

The durations of all events are assumed to be exponentially distributed random times.
More specifically, the average times needed to process a part are: 2 minutes for machine
1, 2 minutes for machine 2, and 4 minutes for machine 3. The average time needed to
assemble a final part at the assembler is 3 minutes. The average time needed to inspect a
part for inspector 1 or 2 is 1 minute. 80% of A-parts pass inspector 1’s test. 20% of
assembled parts cannot pass Inspector 2’s test and they are evenly sent back to
disassemblers 1 and 2. The average time for disassemblers 1 and 2 to disassemble a part
are same, i.e., 6 minutes.

Figure 13 shows the Petri net model of the manufacturing system with descriptions of
places and transitions shown in Table 1. The net is also a flow net with one source
transition t1 denoting the arrival of parts. There are 5 loops in the model:

Loop 1: p1t2p2t3p3t4p4t6p1;

Loop 2: p1 t2p2t3p3t4p4t5p5t8p8t9p9t11p1;

Loop 3: p7t8p8t9p9t11p7;

Loop 4: p1t2p2t3p3t4p4t5p5t8p8t9p9t12p1;

Loop 5: p6t7p7t8p8t9p9t12p6.

Using the technique given in Section 3.2, we convert the model into an acyclic one as
shown in Figure 14 in terms of equivalent throughput. The structural division according to
Eq. (6) for the equivalent model gives that

T1 = {t1}, T2 = {t2}, T3 = {t3}, T4 = {t4}, T5 = {t5, t7}, T6 = {t8},

T7 = {t9}, T8 = {t10}; P1 = {p1}, P2 = {p2}, P3 = {p3}, P4 = {p4, p6},

P5 = {p5, p7}, P6 = {p8}, P7 = {p9}, P8 = {p10}.
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Table 1. Legend for Figure 13.

Place Description

p1 Part of type 1

p2 A-part after the processing of machine 1

p3 B-part after the processing of machine 2

p4 Examining result of  inspector 1

p5 A-part for assembly

p6 B-part

p7 B-part for assembly

p8 Assembled product

p9 Examining result of  inspector 2

p10 Final product

Transition Description Firing rate (1/hour)

t1 One A-part and two B-parts arrive λ1

t2 Machine 1 works on an A-part λ2=30

t3 Machine 2 works on an A-part λ3=30

t4 Inspector 1 examines an A-part λ4=60

t5 A-part satisfies quality requirements Immediate (λ5=∞)

t6 A-part doesn’t satisfy quality requirements Immediate (λ6=∞)

t7 Machine 3 works on B-part λ7=15

t8 Assembler works λ8=20

t9 Inspector 2 examines assembled product λ9=60

t10 Final product is unloaded λ10=60

t11 Disassembler 1 works λ11=10

t12 Disassembler 2 works λ12=10

t1
t2 t3 t4 t5

t6

t7

t8 t9 t10

t11

t12

p1
p2 p3

p4

p5

p6 p7

p8 p9 p10

2
2

{0.8}

{0.2}

{0.8}

{0.1}

{0.1}

Figure 13. SPN model of an assembly system.
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Based on the algorithm given in Section 3.1, we list the relationships between the average
token flow rate of each non-source transition and the firing rates of source transitions as
following

f2 = 1.11×1.11×1.25λ1,              (for P1)
f2 = f3,                  (for P2)
f4 = f3,                  (for P3)
f5 = 0.8f4, f7 = 2×1.11λ1,                  (for P4)
f8 = f5, 2f8 = 0.9λ7,                  (for P5)
f9 = f8,                  (for P6)
f10 = 0.9×0.9f9,                  (for P7)

Rewrite these equalities as follows:
λ1 = 0.648f2, λ1 = 0.648f3, λ1 = 0.648f4, λ1 = 0.81f5,
λ1 = 0.45f7, λ1 = 0.81f8, λ1 = 0.81f9, λ1 = f10.

Because fi = λi for i = 2, 3, 4, 5, 7, 8, 9, and 10, so
max λ1 = min {0.648λ2, 0.648λ3, 0.648λ4, 0.81λ5, 0.45λ7, 0.81λ8, 0.81λ9, λ10}
            = 0.45λ7 = 6.25.

Thus, the upper bound of the system throughput is 6.25 per hour.

5. Conclusions

This paper aims at developing a simple and fast algorithm for determining the throughput
of discrete event systems. To the end, we introduced the concept of flow nets that are
more suitable for the throughput analysis of many systems for which strongly connected
marked graphs are not fit for their modeling or SPN’s suffer from state explosion
problems. In a flow net, transitions are divided into two subsets, i.e., source and non-
source transitions, the former representing external task arrivals while the latter
representing internal task processing. The fast algorithm is simpler than those based on
linear programming. For a structurally non-competitive and acyclic flow net, the
algorithm proceeds in four steps: First, divide the places and transitions into groups
according to some rules. Next, list the flow equilibrium equation for each place, which
shows the relationships among the average flows of the input transitions and the output
transitions of any place. Then, deduce the relationships between the average flow of any
non-source transition and that of all source transitions. Finally, determine the throughput
of the model. For a class of structurally competitive and cyclic flow net, we showed how
to convert it to a structurally non-competitive and acyclic one in the sense of equivalent

t1
t2 t3 t4 t5

t7

t8 t9 t10

p1
p2 p3

p4

p5

p6 p7

p8 p9 p10

2×1.11
2

0.81.11×1.11×1.25

0.9×0.9

1.11

Figure 14. Equivalent model of the net shown in Figure 13.
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throughput. Besides, we also presented a technique to transform an SPN with shared
resource to a flow net.

Our future work includes the development of a software package to handle the
throughput analysis for discrete event systems. The work needs also to extend to
bottleneck analysis that is a more difficult problem for general cases.
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