
3.3.1

3.3.1OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

3.3 Class Diagrams
Subject/Topic/Focus:

❍ Class Diagrams: Modeling Static Structure

Summary:

❍ Perspectives: Conceptual, Specification, Implementation

❍ Attributes, Operations and Methods

❍ Associations, Navigability, Aggregation, Composition, Association Classes

❍ Generalization, Interfaces, Abstract Classes

❍ Multiple and Dynamic Classification

❍ Parameterized Classes

Literature:

❍ Fowler

❍ Rumbaugh

3.3.2OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Class Diagrams: Overview

❍ There are two principal kinds of static relationships:

• associations

– “a customer may rent a number of videos”

• subtypes

– “a student is a kind of person”

❍ Class diagrams also show the attributes and operations of a class and
the constraints that apply to the way objects are connected.

Class diagrams describe the types of objects
in the system and the various kinds of static

relationships that exist among them.

Class diagrams describe the types of objects
in the system and the various kinds of static

relationships that exist among them.

3.3.2

3.3.3OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Role of Class Diagrams

Class Diagrams

State Diagrams

Interaction Diagrams

Use Case Diagrams

structures
are refined byActivity Diagrams

intra-class behavior:
describe states and
state transitions
in classes

inter-class behavior:
describe control flow
between classes

Package Diagrams

structuring

scenarios:
describe typical interaction
sequences between classes

Class diagrams are central for analysis, design and implementation.
Class diagrams are the richest notation in UML.

Class diagrams are central for analysis, design and implementation.
Class diagrams are the richest notation in UML.

3.3.4OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

From Use Cases to Class Diagrams
The requirements list of a company includes the following textual description of
the use case „order“:

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

order

customer

Textfile

Textfile

3.3.3

3.3.5OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Example: Order - Associations

CustomerOrder
1*

Order:

We have customers who may order several products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

Order:

We have customers who may order several products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

Association
Multiplicity

3.3.6OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Example: Order - Generalization

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

CustomerOrder
1*

Corporate
Customer

Personal
Customer

Generalization

3.3.4

3.3.7OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Example: Order - More Associations

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

CustomerOrder
1*

Corporate
Customer

Personal
Customer

Order Line

1

*
Product1*

Role name

Line item

3.3.8OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Example: Order- Attributes & Operations

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

Order:

We have customers who order our products.
We distinguish corporate customers from personal customers, since
corporate customers are billed monthly whereas personal customers
need to prepay their orders with a credit card.

We want our orders to be lined up product by product.
Each line should contain the amount and the price of each product.

Customer
Order

dateReceived
isPrepaid
number:String
price:Money

dispatch()
close()

name
address

creditRating()

Attributes

Operations

3.3.5

3.3.9OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Example: Order - Full Class Diagram
Order

dateReceived
isPrepaid
number:String
price:Money

dispatch()
close()

Order Line

Customer

Corporate
Customer

Personal
Customer

Product
Employeequantity:Integer

price:Money
isSatisfied:Bool

contactName
creditRating
creditLimit

Remind()
billforMonth(Int)

name
address

creditRating()

creditCard#

* 1

1

1

0..1

*

*
*

Multiplicity: mandatory

Association
Generalization

{If Order.customer.creditRating
 is “poor”, then Order.isPrepaid
must be true}

Constraint

Attributes

Operations

Multiplicity: many-valued

Role name

Line item

Multiplicity: optional

3.3.10OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Perspectives
There are three perspectives (views) you can use in drawing class diagrams:

❍ Conceptual

• represents the concepts relating to the classes

• provides language independence

❍ Specification

• represents the software interfaces

• hides the implementation

❍ Implementation

• shows the real classes used in the programming language

• maps directly to the implementation

3.3.6

3.3.11OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Attributes

❍ Attributes may be specified at different levels of detail:

• At the conceptual level a customer’s name attribute indicates that
customers have names.

• At the specification level, this attribute indicates that a customer object
can tell you its name and you can set the name.

• At the implementation level, a customer has a field or an instance
variable for its name.

❍ The UML syntax for attributes, depending on the level of detail:

CustomerCustomer

name
address

name
address

Attributes

+ identifier : String = “Mr. Noname”+ identifier : String = “Mr. Noname”

visibility name: type = default-value

3.3.12OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Operations

❍ Operations are the processes that a class knows to perform.

❍ They correspond to the methods of a class in an OO language.

❍ At specification level operations correspond to public methods on a class.

• Normally you do not show those methods that simply set or get attribute
values.

❍ In the implementation view usually private and protected methods are shown.

❍ The use of UML syntax for operations may vary with the level of detail:

CustomerCustomer

creditRating()creditRating()Operation

visibility name(parameter-list) : return-type-expression {property string}

+ creditRating(for : Year) : Rating {abstract}+ creditRating(for : Year) : Rating {abstract}

3.3.7

3.3.13OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

UML Meta Description

❍ Visibility is + : for public, i.e., every other class can see this.

– : for private, i.e., only this class can see this.

: for protected, i.e., only subclasses can see this.

❍ Identifier is defined by a string.

❍ Parameter-list contains (optional) arguments whose syntax is
the same as that for attributes, i.e., name, type

 and default value.

❍ Return-type-expression is an optional, language-dependent specification
that specifies the type of the return value (if any).

❍ Property-string indicates property values that apply to the given
operation, e.g., if this operation is abstract (not

 implemented in this class, but in subclasses).

visibility name(parameter-list) : return-type-expression {property string}

+ creditRating(for : Year) : Rating {abstract}+ creditRating(for : Year) : Rating {abstract}

3.3.14OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Operations vs. Methods

❍ An operation is something that is invoked on an object (or a message
that is sent to an object) while

❍ a method is the body of a procedure, i.e., the implementation that realizes
the operation or method.

❍ This distinction facilitates polymorphism.

move(dx,dy)move(dx,dy)

aCircle.move(dx,dy)aCircle.move(dx,dy)

aPoint.move(dx,dy)aPoint.move(dx,dy) Class Point Class Point

Class Circle
extends Point

Class Circle
extends Point

Operation

Method

anObject.move(dx,dy)anObject.move(dx,dy)

... ...

Class ObjectClass Object

move(dx,dy)move(dx,dy)

move(dx,dy)move(dx,dy)

move(dx,dy)move(dx,dy)

3.3.8

3.3.15OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Associations

❍ Associations represent relationships between instances of classes.

• “Peter and Mary are employed by IBM.”

❍ From the conceptual perspective, associations represent conceptual
relationships between classes.

• “Companies employ persons.”

❍ Each association has two roles that may be named with a label.

❍ Multiplicities indicate how many objects may participate in a relationship.

• “A person is employed by a (exactly one) company.”

• “A company may employ many persons.”

Peter Mary

Person Company

IBM

Person Company
Employer

Employee

Person Company
1

*

Instances are marked
by underlining.

Instances are marked
by underlining.

3.3.16OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Associations: Multiplicities

❍ The represents the range 0..Infinity.

❍ The 1 stands for 1..1.

• “An order must have been placed by exactly one customer.”

❍ For more general multiplicities you can have

• a single number like 11 soccer players,

• a range, for example, 2..4 players for a canasta game,

• a discrete set of numbers like 2,4 for doors in a car.

Order Customer* 1

A customer may
have many orders.

An order comes from
only one customer.

*

3.3.9

3.3.17OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Navigability
❍ To indicate navigability with associations, arrows are added to the lines.

OrderOrder CustomerCustomer
1

❍ In a specification view this would indicate that an order has a
responsibility to tell which customer it is for, but a customer has no
corresponding ability to tell you which orders it has.

❍ In an implementation view, one would indicate, that order contains a
pointer to customer but customer would not point to orders.

❍ If a navigability exists in only one direction it is called
uni-directional association

otherwise
bi-directional association.

*

Navigation direction

3.3.18OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Aggregation
❍ Aggregation is the part-of relationship.

• “A CPU is part of a computer.”

• “A car has an engine and doors as its parts.”

❍ Aggregation vs. attributes :

• Attributes describe properties of objects, e.g. speed, price, length.

• Aggregation describe assemblies of objects.

❍ Aggregation vs. association:

• Is a company an aggregation over its employees or is it an association
between its employees?

Car
Engine

Door

CPUComputer
1

2..4

1

*

1

*
Employee

Company

Employee

Company

?

3.3.10

3.3.19OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Composition
❍ Composition is a stronger version of aggregation:

❍ The part object may belong to only one whole.

❍ The parts usually live and die with the whole.

❍ Example:

❍ Aggregation: A company has employees. The employees may change
the company.

❍ Composition: The company has a tax registration. The tax registration
is tied to the company and dies with it.

Employee Tax Registration

Aggregation CompositionCompany

3.3.20OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Example: Aggregation & Composition

A polygon contains an
ordered collection of points.

PolygonPolygon

PointPoint Graphical IconGraphical Icon

color
texture

color
texture

3..*{ordered}

1
Aggregation Composition

These points may be changed
as the polygon is edited.

A graphics icon is created
and destroyed with the
polygon and cannot be
changed.

The attributes can be changed, but
the icon cannot be replaced by
another object.

3.3.11

3.3.21OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Association Classes
Example: Persons are employed by companies for a period of time.

Question: Where does the period attribute go?

Association classes allow you to model associations by classes, i.e., to add
attributes, operations and other features to associations.

PersonPerson CompanyCompany
*

employer

0..1

EmploymentEmployment

period:DateRangeperiod:DateRange

Association class

employee

Note: a person and a company are associated only by one employment period here.

3.3.22OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Association Classes vs. Full Classes
❍ If a person may return to a company, you have to use a full class:

❍ But: A person may have only one competency level for each skill:

PersonPerson CompanyCompany*

/employer

0..1
EmploymentEmployment

period:DateRangeperiod:DateRange
11

0..1*

PersonPerson SkillSkill
* *

CompetencyCompetency

levellevel Association class

3.3.12

3.3.23OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Generalization
Generalization captures similarities between several classes in a superclass
Specialization refines and adds differences in subclasses.

CustomerCustomer

name
address

name
address

creditRating()creditRating()

The differences are separated
in specialized subclasses.

Similarities are placed
in a general superclass.

Personal
Customer

Personal
Customer

Corporate
Customer

Corporate
Customer

contactName
creditRating
creditLimit

contactName
creditRating
creditLimit

Remind()
billforMonth(Int)

Remind()
billforMonth(Int)

creditCard#creditCard#

3.3.24OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Generalization: Perspectives

❍ In a specification context, generalization means that the interface of a
subclass includes all elements of the interface of the superclass.

❍ Generalization/Specialization can also be understood through the principle
of substitutability.

• Any operation carried out on a customer can be performed on a
corporate customer, too.

• The corporate customer probably responds differently from the
regular customer by the principles of polymorphism.

❍ Generalization at the implementation perspective is associated with
inheritance in programming languages.

3.3.13

3.3.25OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Interfaces

❍ An interface is a (abstract) class with no implementation.

• An interface is implemented (refined) by (different) classes.

• The implementation can be changed without changing the clients.

❍ Example: A portable text editor displays its windows using a window
interface that is implemented differently for Windows 95 and Mac OS.

Text
Editor

Text
Editor

<<interface>>
Window

<<interface>>
Window

Windows 95 WindowWindows 95 Window

toFront()
toBack()

toFront()
toBack()

Mac OS WindowMac OS Window

toFront()
toBack()

toFront()
toBack()

Dependency (see below)

toFront()
toBack()

toFront()
toBack()

Generalization/
Refinement

3.3.26OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Abstract Classes
❍ An abstract class is a class without a (full) implementation.

• Some methods are deferred, i.e., they are not implemented.

• The deferred methods are implemented by subclasses only.

❍ Example: The window move operation is implemented by using hide and
show methods which are implemented by subclasses.

Text
Editor

Text
Editor

Window
 {abstract}

Window
 {abstract}

Windows 95 WindowWindows 95 Window

hide()
show()

hide()
show()

Mac OS WindowMac OS Window

hide()
show()

hide()
show()

x, y

hide() {abstract}
show() {abstract}
move(dx, dy)

x, y

hide() {abstract}
show() {abstract}
move(dx, dy)void move(int dx, int dy)

{
 hide();
 x = x+dx; y = y+dy;
 show();
}

Implementation

3.3.14

3.3.27OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Example: Interfaces and Abstract Classes
Example from Java class libraries:

❍ InputStream is an abstract class, i.e., some methods are deferred.

❍ DataInput is an interface, i.e., it implements no methods.

❍ DataInputStream is a subclass of InputStream; it implements the
deferred methods of InputStream, and the methods of the interface
DataInput.

❍ OrderReader uses only those methods of DataInputStream that are
defined by the interface DataInput.

InputStream
 {abstract}

<<interface>>
 DataInput OrderReader

DataInputStream Refinement

Dependency
Generalization

3.3.28OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Lollipop Notation

OrderReaderOrderReader

DataInputStreamDataInputStream

InputStream

Interface

Dependency

The interfaces or abstract classes are represented by small circles
(lollipops), coming off the classes that implement them.

DataInput

Abstract class
Implementation class

3.3.15

3.3.29OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Interfaces vs. Abstract Classes
❍ There is no distinction between refining an interface and subclassing an

abstract class.

❍ Both define an interface and defer implementation.

❍ However, abstract classes allow to add implementation of some methods.

❍ An interface forces you to defer the implementation of all methods.

❍ Interfaces are used to emulate multiple inheritance, e.g., in Java.

• A (Java) class cannot be subclass of many superclasses.

• But it can implement different interfaces.

InputStream DataInput

DataInputStream

InputStream
<<interface>>

DataInput

DataInputStream

3.3.30OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Multiple and Dynamic Classification
❍ Classification refers to the relationship between an object and its type,

e.g., Paul is a Person (i.e., object Paul belongs to class Person).

❍ Issues:

• May an object belong to different classes, e.g. Patient and Doctor?

• May an object change its class, e.g., from Patient to Doctor?

❍ In single classification, an object belongs to a single class, which may
inherit from superclasses.

❍ In multiple classification, an object may be described by several classes,
that are not necessarily connected by inheritance.

Most methods make certain assumptions about the
type of relationship between an object and its type.
Jim Odell questioned the restrictive single, static
classification and proposed multiple and dynamic

classification for conceptual modeling.

Most methods make certain assumptions about the
type of relationship between an object and its type.
Jim Odell questioned the restrictive single, static
classification and proposed multiple and dynamic

classification for conceptual modeling.

3.3.16

3.3.31OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Multiple Classification
❍ Example: Somebody in a hospital may be a patient, a doctor, a nurse or simply

a person.

❍ Multiple classification allows an object to be related to many classes.

• Example: Paul may be patient and doctor.

❍ The discriminators patient and profession point out legal combinations:
All subclasses with the same discriminator (e.g., profession) are disjoint.

• Example: Paul could not be doctor and nurse - only doctor or nurse.

❍ Usage of multiple classification:

• May be of importance in early A&D phases.

• Mapping multiple classifications into object-oriented languages is usually
not straight forward.

PatientPatient DoctorDoctor
profession

patient
PersonPerson

NurseNurseDiscriminator
profession

3.3.32OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Multiple Classification vs. Multiple Inheritance
❍ Multiple classification: multiple classes for an object without defining a specific

class for the purpose.

❍ Multiple inheritance: a class may have many superclasses but for each object
a single class must be defined.

PatientPatient DoctorDoctor
profession

PersonPerson

PatientPatient

DoctorDoctor

PersonPerson DoctorAsPatientDoctorAsPatient

patient

3.3.17

3.3.33OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Multiple Classification: Discriminators
❍ The discriminator constraint {complete} indicates that the superclass has

no instances (i.e., is an abstract class); instead, all instances must be of one
of the subclasses; e.g., a person must be either male or female.

❍ Legal combinations are, e.g.,

• (Female, Patient, Nurse)

• (Male, Physiotherapist)

• (Female, Patient)

Female
Person

Female
Person

Male
Person

Male
Person

PersonPerson

SurgeonSurgeon

Family
Doctor

Family
Doctor

profession

patient

sex
{complete}

PatientPatient
DoctorDoctor

NurseNurse

PhysiotherapistPhysiotherapist

❍ Illegal combinations are, e.g.,

• (Patient, Doctor) sex missing

• (Male, Doctor, Nurse) two roles

3.3.34OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

❍ Dynamic classification allows objects to change class within the subclass
structure.

❍ Dynamic classification combines types and states.

❍ Example:

• A person´s profession can change over time. Paul may be a
Physiotherapist and become a Doctor (he could not be both at the
same time!).

❍ Note: this is a stereotype!

Dynamic Classification

PersonPerson

profession
<<dynamic>>

DoctorDoctor

NurseNurse

Physio-
therapist
Physio-
therapist

3.3.18

3.3.35OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

Parameterized (Template) Classes
❍ Often you need generic classes over elements of a single type, especially

for collections, e.g., lists, sets, bags of elements, ...

❍ Generic classes abstract from the elements they work on, e.g., set of
integer, set of person, ...

SetSet
T Template parameter

Template class

insert(T)
includes(T)

insert(T)
includes(T)

PersonSetPersonSet

Refinement
<<bind>>
<Person>

Bound class

Parameter binding

Note: In Java there are
no type parameters or
templates.

Note: In Java there are
no type parameters or
templates.

3.3.36OOA&D © J.W. Schmidt, F. Matthes, TU Hamburg-Harburg

When and How to Use Class Diagrams

Class diagrams are the backbone of nearly all object-oriented methods.
Especially they facilitate code generation.

The trouble with class diagrams and their rich notation is that they can be
extremely detailed and therefore confusing.

❍ Do not try to use all the notations available to you, if you do not have to.

❍ Fit the perspective from which you are drawing the diagrams to the
stage of the project.

• If you are in analysis, draw conceptual models.

• When working with software, concentrate on specification.

• Draw implementation models only when you are illustrating a particular
implementation technique.

❍ Don‘t draw diagrams for everything; instead concentrate on the key areas.

