

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 137 – 152, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Intuitive Formal Approach to Dynamic Workflow
Modeling and Analysis

Jiacun Wang1, Daniela Rosca1, William Tepfenhart1, Allen Milewski1,
and Michael Stoute2

1 Department of Software Engineering,
Monmouth University,

West Long Branch, NJ 07762, USA
{jwang, drosca, btepfenh, amilewsk}@monmouth.edu

2 Intellipro, Inc.
255 Old New Brunswick Road,

Piscataway, NJ 08854, USA
jason@intellipro.com

Abstract. The increasing dynamics and the continuous changes of business
processes raise a challenge to the research and implementation of workflows.
The significance of applying formal approaches to the modeling and analysis of
workflows has been well recognized and many such approaches have been pro-
posed. However, these approaches require users to master considerable knowl-
edge of the particular formalisms, which impacts the application of these
 approaches on a larger scale. This paper presents a new formal, yet intuitive
approach for the modeling and analysis of workflows, which attempts to over-
come the above problem. In addition to the abilities of supporting workflow
validation and enactment, this new approach possesses the distinguishing fea-
ture of allowing users who are not proficient in formal methods to build up and
dynamically modify the workflow models that address their business needs.

1 Introduction

Although workflow is an old concept [13] its research and implementation are gaining
momentum due to the increasing dynamics and the continuous changes of the market
places. The business environment today is undergoing rapid and constant changes.
The way companies do business, including the business processes and their underly-
ing business rules, ought to adapt to these changes flexibly with minimum interrup-
tion to ongoing operations [3,5]. This flexibility becomes of a paramount importance
in applications such as an incident command system (ICS). An ICS would support the
activities necessary for the allocation of people, resources and services in the event of
a major natural or terrorist incident. An ICS would need to deal with frequent changes
of the course of actions dictated by incoming events, a predominantly volunteer-based
workforce, the need to integrate various software tools and organizations, a highly
distributed workflow management.

Dealing with these issues generates many challenges for a workflow management
system. The need of making many ad-hoc changes calls for an on-the-fly verification of
the correctness of the modified workflow. This cannot be achieved without an underlying

 J. Wang et al.

138

formal approach of the workflow, which does not leave any scope for ambiguity and sets
the ground for analysis. Yet, since our main users will be volunteers from various back-
grounds, with little computer experience, we need to provide a tool with highly intuitive
features for the description and modification of the workflows.
 A number of formal modeling techniques have been proposed in the past decades
[1, 6, 8, 10, 11, 12]. Van der Aalst [9] identifies three reasons for using Petri Nets in
workflow modeling. Firstly, Petri Nets possess formal semantics despite their graphi-
cal nature. Secondly, instead of being purely event-based, Petri Nets can explicitly
model states, and lastly it is a theoretical proven analysis technique. Other than Petri
Nets, techniques such as state charts have also been proposed for modeling WFMS
[4]. Although state charts can model the behavior of workflows, they have to be sup-
plemented with logical specification for supporting analysis. Singh et al [7] use event
algebra to model the inter-task dependencies and temporal logic. Attia et al [2] have
used computational tree logic to model tasks by providing their states together with
significant events corresponding to the state transitions (start, commit, rollback etc)
that may be forcible, rejectable, or delayable.

As indicated in [10], it is desirable that a business process model can be understood
by the various stakeholders involved in an as straightforward manner as possible.
Unfortunately, a common major drawback that all the above formal approaches suffer
is that only users who have the expertise in these particular formal methods can build
their workflows and dynamically change the business rules within the workflows. For
example, in order to add a new task to a Petri-net based workflow, one must manipu-
late the model in terms of transitions, places, arcs and tokens, which can be done
correctly and efficiently only by a person with a good understanding of Petri-nets.
This significantly affects the application of these approaches on a large scale. This
paper attempts to define a new formalism for the modeling and analysis of workflows,
which, in addition to the abilities of supporting workflow validation and enactment,
possesses the distinguishing feature of allowing users who are not proficient in formal
methods to build up and dynamically modify the workflows that address their busi-
ness needs.

The paper is organized as follows: Section 2 presents the new workflow formalism
(WIFA – Workflows Intuitive Formal Approach), its state transition rules and its
modeling power. Section 3 introduces well-formed workflows and how to build up a
well-formed workflow. Section 4 gives a brief description of our tool for workflows
modeling and analysis. Section 5 presents conclusions and ideas for the continuation
of this work.

2 The WIFA Workflow Model

In general, a workflow consists of processes and activities, which are represented by
well-defined tasks. The entities that execute these tasks are humans, application pro-
grams or database management systems. These tasks are related and dependent on one
another based on business policies and rules [4]. In this section, we introduce the
WIFA workflow model which captures tasks and relations among them in a work-
flow. We also define a set of state transition rules to facilitate the analysis of the dy-
namic behavior of a workflow.

An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis

139

2.1 WIFA Workflow Model Definitions

The control dependencies among tasks contain the order in which they can execute.
Two tasks are said to have precedence constraints if they are constrained to execute
in some order. As a convention, we use a partial-order relation <, called a precedence
relation, over the set of tasks to specify the precedence constraints among tasks. A
task Ti is a predecessor of another task Tj (and Tj a successor of Ti) if Tj cannot begin
execution until the execution of Ti completes. A short-hand notation for this fact is Ti
< Tj. Ti is an immediate predecessor of Tj (and Tj an immediate successor of Ti) if Ti <
Tj and there is no other task Tk such that Ti < Tk < Tj. We denote this fact with notation
pij = 1. Naturally, the fact that Ti is not an immediate predecessor of Tj is denoted by
pij = 0. Two tasks are independent when neither Ti < Tj nor Tj < Ti. A classic way to
represent the precedence constraints among tasks in a set T is by a directed graph G =
(T, <), in which each vertex represents a task in T, and there is a directed edge from
vertex Ti to vertex Tj if Ti is an immediate predecessor of Tj. The graph is called a
precedence graph.

Definition 1 (preset of a task): The preset of a task Tk, denoted by *Tk, is

*Tk = {Ti | pik = 1}.

Definition 2 (postset of a task): The postset of a task Tk, denoted by Tk*, is

Tk* = {Ti | pki = 1}.

Basically, the preset of a task is the set of all tasks that are immediate predecessors
of the task, while the postset of a task is the set of all tasks that are immediate succes-
sors of the tasks. If |Tk*| ≥ 1, then the execution of Tk might trigger multiple tasks.
Suppose {Ti, Tj} ⊆ Tk*. There are two possibilities: (1) Ti and Tj can be executed si-
multaneously, and (2) only one of them can be executed, and the execution of one will
disable the other due to the conflict between them. We denote the former case by cij =
cji = 0, and the latter case by cij = cji = 1.

If |*Tk| ≥ 1, then based on the aforementioned classic precedence model, the exe-
cution of Tk won’t start until all of its immediate predecessors are executed. This
precedence constraint is also called AND precedence constraint. An extension to this
classic precedence model is to allow a task to be executed when some of its immedi-
ate predecessors are executed. This loosens the precedence constraints to some extent,
and the loosened precedence constraint is also called OR precedence constraint. Ob-
viously, the OR precedence model provides more flexibility than the classic AND
precedence model in describing the dependencies among tasks. So in this paper, the
OR precedence model is adopted. The AND precedence model can be viewed as a
special case of the OR precedence model.

Suppose *Tk = {Tk1, Tk2, … Tkn}, n ≥ 1. Define A(Tk) = {A1, A2, … Ah}, h ≥ 1 such
that

1) Ai ⊆ *Tk, i = 1, 2, …, h, i.e. A(Tk) is a set of subsets of *Tk.

2) Ai ≠ Aj, ∀i ≠ j, i, j ∈ {1, 2, …, h}, i.e. these subsets are all different.

 J. Wang et al.

140

3) Tk is executable if and only if all tasks in any Ai ∈ A(Tk) are executed. In other
words, Tk can be triggered by any subset in A(Tk), but only after all tasks in
that subset are executed.

The set A(Tk) is used to specify the pre-condition set for Tk to become executable.

The state of a workflow can be described as an array whose elements are the states
of all individual tasks in the workflow. Denote by S a state of a workflow, then S =
(S(T1), S(T2), …, S(Tm)).

Now we are ready to formally define our WIFA workflow model.

Definition 3 (workflow): A workflow is WF = (T, P, C, A, S0), where

1) T = {T1, T2, …, Tm} is a set of tasks, m ≥ 1.

2) P = (pij)mxm is the precedence matrix of the task set. If Ti is the direct prede-
cessor of Tj, then pij = 1; otherwise, pij = 0.

3) C = (cij)mxm is the conflict matrix of the task set. cij ∈ {0, 1} for i = 1, 2, …m
and j =1, 2, … m.

4) A = (A(T1), A(T2), …, A(Tm)) defines pre-condition set for each task. ∀Tk ∈ T,

A(Tk): *Tk → kT*2 . Let set A’ ∈ A(Tk). Then Ti ∈ A’ implies pik = 1.

5) S0 ∈ {0, 1, 2, 3}m is the initial state of the workflow.

Definition 4 (state values): Denote a state of the WF by S = (S(T1), S(T2), …, S(Tm)),
where S(Ti) ∈ {0, 1, 2, 3}.

1) S(Ti) = 0 means Ti is not executable at state S and not executed previously.

2) S(Ti) = 1 means Ti is executable at state S and not executed previously.

3) S(Ti) = 2 means Ti is not executable at state S and executed previously.

4) S(Ti) = 3 means Ti is executable at state S and executed previously.

By the definition of state values, at any state, only those tasks whose values are ei-
ther 1 or 3 can be selected for execution. Suppose task Ti at state Sa is selected for
execution, and the new state resulted from the execution of Ti is Sb, then the execution
of Ti is denoted by Sa(Ti)Sb.

Now we can have a more accurate explanation on the conflict matrix C and the
precondition set A of a task. Let tasks Ti, Tj and Tk ∈ T with pki = pkj = 1. Suppose
there are three states Sa, Sb and Sc such that either Sa(Ti) = Sa(Tj) = 1 or Sa(Ti) = Sa(Tj)
= 3, and Sa(Ti)Sb and Sa(Tj)Sc.

1) If Sa(Ti) = Sa(Tj) = 1, then cij = cji= 1 implies Sb(Tj) = Sc(Ti) = 0, and cij = cji = 0
results in Sb(Tj) = Sc(Ti) = 1.

2) If Sa(Ti) = Sa(Tj) = 3, then cij = cji= 1 implies Sb(Tj) = Sc(Ti) = 2, and cij = cji = 0
results in Sb(Tj) = Sc(Ti) = 3.

On the other hand, suppose A(Tk) = {A1, A2, … Ah}, h ≥ 1. Then Sa(Tk) ∈ {1, 3} if
∃Ai ∈ A(Tk) such that Sa(Tj) = 2 for ∀Tj ∈ Ai.

Definition 5: (initial state) At the initial state S0, for any task Ti ∈ T, if there is no Tj
such that pji = 1, then S0(Ti) = 1; otherwise S0(Ti) = 0.

An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis

141

Note that tasks that have no predecessor do not need to wait for any other task to
execute first. In other words, these tasks are executable immediately. We assume that
there is always such kind of tasks in a workflow. They are the initial triggers or “start-
ing” tasks of workflows. In Definition 1 there is no restriction on the preset and post-
sets of tasks. Therefore, there may be multiple tasks whose presets are empty, and
there may be multiple tasks whose postsets are empty. In other words, this formalism
supports multiple “starting” tasks and “ending” tasks in a workflow.

2.2 State Transition Rules

The dynamics of a workflow can be captured by state transitions. Of course, state
transitions should be guided by a set of state transition rules. In this subsection, we
define the rules.

Definition 6: (state transition rules) If Sa(Ti)Sb, then ∀ Tj ∈ T,

1) If Tj = Ti then Sb(Tj) = 2;

2) If Tj ≠ Ti then the state value of Tj at new state Sb depends on its state value at
state Sa. We consider four cases:

Case A – Sa(Tj) = 0:
If pij = 1 and ∃A’ ∈ A(Tj) such that Sb(Tk) = 2 for any Tk∈A’, then Sb(Tj) =
1; otherwise Sb(Tj) = 0.

Case B – Sa(Tj) = 1
If cij = 0 then Sb(Tj) = 1; otherwise Sb(Tj) = 0.

Case C – Sa(Tj) = 2
If pij = 1 and ∃A’ ∈ A(Tj) such that Sb(Tk) = 2 for any Tk∈A’, then Sb(Tj) =
3; otherwise Sb(Tj) = 2.

Case D – Sa(Tj) = 3
 If cij = 0 then Sb(Tj) = 3; otherwise Sb(Tj) = 2.

According to the above state transition rules, a task’s state value at a given state
other than the initial state is 0 iff one of the following holds:

1) Its state value is 0 in the previous state, and it is not the successor of the task
which is just executed.

2) Its state value is 0 in the previous state, and it is the successor of the task which
is just executed, but for each of its precondition sets there is at least one task
that is not executed.

3) Its state value is 1 in the previous state but it conflicts with the task which is
just executed.

A task’s state value at a given state other than the initial state is 1 iff one of the fol-
lowing holds:

1) Its state value is 0 in the previous state, it is the successor of the task which is
just executed, and in at least one of its precondition sets all tasks are executed.

2) Its state value is 1 in the previous state and it does not conflict with the task
which is just executed.

 J. Wang et al.

142

A task’s state value at a given state other than the initial state is 2 if and only if one
of the following holds:

1) It is just executed.

2) Its state value is 2 in the previous state, and it is not the successor of the task
which is just executed.

3) Its state value is 2 in the previous state, and it is the successor of the task which
is just executed, but for each of its precondition sets there is at least one task
that is not executed.

4) Its state value is 3 in the previous state but it conflicts with the task which is
just executed.

A task’s state value at a given state other than the initial state is 3 if and only if one
of the following holds:

1) Its state value is 2 in the previous state, it is the successor of the task which is
just executed, and there is at least one of its precondition sets in which every
task is executed.

2) Its state value is 3 in the previous state and it does not conflict with the task
which is just executed.

Note that a state value can increment from 0 to 1, from 1 to 2 or from 2 to 3; it can
also decrement from 1 to 0 or from 3 to 2. But it cannot decrement from 2 to 1. Fig. 1
illustrates possible state value changes for a given task when a workflow changes
from one state to another state due to the execution of some task.

Fig. 1. State transition of an individual task

2.3 Example

We now illustrate how to apply the WIFA approach to workflow modeling and analy-
sis through an example. Assume that we have a workflow with eight tasks, namely T1,
T2, … T8. Its specification is as follows:

• T1 is the direct predecessor of T2 and T3, T2 is the immediate predecessor of T4,
T4 is the immediate predecessor of T5, T5 is the immediate predecessor of T6 and
T7, T6 is the second immediate predecessor of T2, T3 is the immediate predeces-
sor of T7, and T7 is the second immediate predecessor of T8. See Fig. 2.

• T6 and T7 conflict with each other. In other words, after T5 is executed, if T6 is
selected for execution, then the execution of T6 will make T7 not executable and
vice versa.

 0 1 2 3

An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis

143

Fig. 2. Precedence graph of an eight-task workflow

• T1 is executable when the workflow is started. T2 and T3 become executable
when T1 is executed. T2 also becomes executable when T6 is executed. T4 be-
comes executable when T2 is executed. T5 becomes executable when T4 is exe-
cuted. T6 and T7 become executable when T5 is executed. T4 becomes executa-
ble when T2 is executed. T5 becomes executable when T4 is executed. And T8
becomes executable when both T3 and T7 are executed.

This workflow is formulated in the WIFA framework as:

T = {T1, T2, T3, T4, T5, T6, T7, T8},

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000000

10000000

00000010

01100000

00010000

10000000

00001000

00000110

P
,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000000

00100000

01000000

00000000

00000000

00000000

00000000

00000000

C

A(T1) = Ø, A(T2) = {{T1}, {T6}}, A(T3) = {{T1}},

A(T4) = {{T2}}, A(T5) = {{T4}},

A(T6) = A(T7) = {{T5}}, A(T8) = {{T3, T7}}.

S0 = (1, 0, 0, 0, 0, 0, 0, 0).

Now let us examine the execution of this workflow. At S0, T1 is the only executa-
ble task. Let S0(T1)S1, then based on the state transition rule, we have

S1(T1) = 2 (Rule 1)

S1(T2) = S1(T3) = 1 (Rule 2A)

S1(T4) = S1(T5) = S1(T6) = S1(T7) = S1(T8) = 0 (Rule 2A)

So S1 = (2, 1, 1, 0, 0, 0, 0, 0).
At S1, T2, T3 are executable, because their state values are 1. Let S1(T2)S2, then

based on the state transition rule, we have

T1

T2

T3

T6

T4 T5
T7

T8

 J. Wang et al.

144

S2(T1) = 2 (Rule 2C)

S2(T2) = 2 (Rule 1)

S2(T3) = 1 (Rule 2B)

S2(T4) = 1 (Rule 2A)

S2(T5) = S2(T6) = S2(T7) = S2(T8) = 0 (Rule 2A)

So S2 = (2, 2, 1, 1, 0, 0, 0, 0).
At S2, T3 and T4 are executable, because their state values are 1. Let S2(T3)S3, then

based on the state transition rule, we have

S3(T1) = S3(T2) = 2 (Rule 2C)

S3(T3) = 2 (Rule 1)

S3(T4) = 1 (Rule 2B)

S2(T5) = S2(T6) = S2(T7) = S2(T8) = 0 (Rule 2A)

So S3 = (2, 2, 2, 1, 0, 0, 0, 0). Notice that T6 is not executable now because neither T4

nor T5 is executed.
At S3, only T4 is executable, because it is the only task with state value 1 or 3. Let

S3(T4)S4, then it follows from the state transition rules that S4 = (2, 2, 2, 2, 1, 0, 0, 0).
At S4, only T5 is executable. Let S4(T5)S5, then it follows from the state transition rules
that S5 = (2, 2, 2, 2, 2, 1, 1, 0).

At S5, T6 and T7 are executable, because their state values are 1. The execution T6

causes the workflow to proceed along the T2-T4-T5-T6-T2 loop. Let S5(T6)S6, then
based on the state transition rule, we have

S6(T1) = S5(T3) = S5(T4) = S5(T5) = 2 (Rule 2C)

S6(T2) = 3 (Rule 2C)

S6(T6) = 2 (Rule 1)

S6(T7) = S6(T8) = 0 (Rule 2A)

So S6 = (2, 3, 2, 2, 2, 2, 0, 0). Notice that T7 becomes not executable now because T6

and T7 are in conflict.

Task T2 will execute at S6, which results in S7 = (2, 2, 2, 3, 2, 2, 0, 0). Then task T4

will execute at S7, which results in S8 = (2, 2, 2, 2, 3, 2, 0, 0). Then task T5 will
execute at S8, which results in S9 = (2, 2, 2, 2, 2, 3, 1, 0). Let S9(T7)S10, then based on
the state transition rule, we have

S10(T1) = S5(T2)= S5(T3) = S5(T4) = S5(T5) = 2 (Rule 2C)

S10(T6) = 0 (Rule 2A)

S10(T7) = 2 (Rule 1)

S10(T8) = 1 (Rule 2A)

An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis

145

So S10 = (2, 2, 2, 2, 2, 2, 2, 1). Notice that T8 is executable now because both T3 and T7

are executed. The execution of T8 results in S11 = (2, 2, 2, 2, 2, 2, 2, 2). At this state,
no more tasks are executable.

The above analysis only traces one execution path. The entire state transition
graph of this workflow is depicted in Fig. 3, which contains 22 states in total. The
workflow may either stop at state (2, 2, 2, 2, 2, 2, 2, 2) if the workflow is looped or at
state (2, 2, 2, 2, 2, 0, 2, 2) if it doesn’t go through the loop.

Discussion: This example shows that our formal workflow model can be directly
formulated from the users’ specification of the workflow. The importance of this fact
lies in that the proposed approach supports automated formulation from users’ work-
flow description to a formal model of the workflow. More discussion will be provided
in next section.

2.4 WIFA Modeling Power

The characteristics exhibited by the task executions of workflows such as concurrency,
decision making, synchronization and loops are modeled very effectively with the WIFA
model. These characteristics are represented using a set of simple constructs:

1) Sequential execution: In the example, tasks T1 and T2 are executed sequen-
tially. This relationship is specified by p12 = 1 in the precedence matrix. Such
precedence constraints are typical of execution tasks in a workflow. Also,
this construct models the causal relationships among activities.

2) Conflict: In the example, tasks T6 and T7 conflict with each other. This is
specified by c67 = c76 = 1 in the conflict matrix. Such a situation will arise,
for example, when a user has to choose among multiple possible actions.

3) Concurrency: In example, tasks T2 and T3 are concurrent. Concurrency is an
important attribute of a workflow. A sufficient condition for two tasks to be
concurrent is that they are successors of some other task, and they are not in
conflict.

4) Synchronization: Oftentimes, a task in a workflow has to wait for execution
results of two or more other tasks before it can be executed. The resulting
synchronization of tasks can be captured by the pre-condition set of a task. In
the example, A(T8) = {T3, T7},means T3 is synchronized with T7 for T8.

5) Loop: Loop is a common characteristic within a workflow structure where
some tasks are executed repeatedly. As an example shown in Fig. 2, tasks T2,
T4, T5 and T6 could be executed again and again.

6) Mutual exclusion: Mutual exclusion is defined as following.

Definition 7 (mutual exclusion) Two tasks Ti and Tj are said to be mutual exclusive
based on the following recursive definition:

1) Ti and Tj are mutual exclusive if cij = 1.

2) If Ti and Tj are mutual exclusive and *Tk = {Ti}, then so are Tk and Tj.

 J. Wang et al.

146

Fig. 3. State transition graph of the example workflow

Fig. 4. A precedence graph where T2 and T3 are in conflict

T1

T2 T4 T5

T3 T6

T7

T1

T2 T3

T3 T2 T4

T5

T6

T4

T2

T4

T5

T6

T2

T4

T3

T3

T3

T3

(1 0 0 0 0 0 0 0)

(2 1 1 0 0 0 0 0)

(2 2 1 1 0 0 0 0) (2 1 2 0 0 0 0 0)

(2 2 2 1 0 0 0 0)
(2 2 2 2 1 0 0 0) (2 2 1 2 1 0 0 0)

(2 2 1 2 2 1 1 0) (2 2 2 2 2 1 1 0)

(2 3 1 2 2 2 0 0) (2 3 2 2 2 2 0 0) (2 2 2 2 2 0 2 1)

(2 2 1 3 2 2 0 0) (2 2 2 3 2 2 0 0) (2 2 2 2 2 0 2 2)

T5 T5
T3

(2 2 1 2 3 2 0 (2 2 2 2 3 2 0 0)

T7 T7
T3

(2 2 1 2 2 3 1 0) (2 2 2 2 2 3 1 0)

T3
(2 2 1 2 2 2 2 0) (2 2 2 2 2 2 2 1)

T8
(2 2 2 2 2 2 2 2)

T6

T7

T8

T6

An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis

147

According to this definition, any two mutual exclusive tasks are rooted from two
conflicting tasks. For example, assume that tasks T2 and T3 in Fig.4 are in conflict.
Then any task from set {T2, T4, T5} and any task from set {T3, T6} are mutual
exclusive. So, when T2 and T3 are triggered by T1, either the branch T2-T4-T5 or the
branch T3-T6 will be chosen to execute.

3 Well-Formed Workflows

In this section, we introduce well-formed workflows which have no dangling tasks and
are guaranteed to finish. We particularly discuss confusion-free workflows, which are
a class of well-formed workflows and have some distinguishing properties. We intro-
duce how to build confusion-free workflows, and how to ensure a workflow remains
confusion-free when it needs to be changed.

3.1 Well-Formed Workflow Definitions

Definition 8 (reachable set): A state S of a workflow is reachable from the initial
state if and only if there is a sequence of tasks that are executable sequentially from
the initial state and the execution of these tasks leads the workflow to state S. The set
of all reachable states, including the initial state, is called the reachable set. It is de-
noted by .

Definition 9 (well-formed workflow): A workflow is well-formed if and only if the
following two behavior conditions are met:

1) ∀Ti ∈T, ∃ S ∈ such that S(Ti) = 1. (i.e. there is no dangling task.)

2) ∃ S ∈ such that S(Ti) ∈ {0, 2} for ∀Ti ∈ T. (i.e. there is at least one ending
state.)

The example workflow given in Section 2.3 is well-formed, because every task in
this workflow is executable, and there are two ending states. In general, the validation
of a workflow being well-formed requires the reachability analysis of the workflow.
Below we introduce confusion-free workflows, which are a class of well-formed
workflows with some restrictions imposed on their structure.

Definition 10 (confusion-free workflow): A well-formed workflow is confusion-free
if and only if the following two structural conditions are met:

1) ∀Tk ∈ T with |Tk* | ≥ 3, if ∃ Ti, Tj ∈ Tk* such that cij = 1 (or cij = 0), then for
∀Ta, Tb ∈ Tk* cab = 1 (or cab = 0) (i.e., either all tasks triggered by the same task
are in conflict, or no pair of them are in conflict.)

2) ∀Tk ∈T with *Tk = {Tk1, Tk2, …, Tkn}, n ≥ 2, either

A(Tk) = {{ Tk1, Tk2, …, Tkn}}, (1)

or

A(Tk) = {{Tk1}, {Tk2}, …, {Tkn}} (2)

(i.e., Tk becomes executable either when all of its predecessor tasks are exe-
cuted, or when any one of them is executed.)

R

R
R

 J. Wang et al.

148

Based on this definition, the example workflow in Section 2.3 is also confusion-
free. As will be described next in Theorem 1, it is easy to construct and validate a
confusion-free workflow.

From the perspective of triggering condition and relation among triggered tasks,
tasks in a confusion-free well-formed workflow can be classified into four types:

1) And-In-Parallel-Out A task belongs to this class iff it is not executable until
all its direct predecessor tasks are executed, and after it is executed, all its di-
rect successor tasks can be executed in parallel.

2) And-In-Conflict-Out A task belongs to this class iff it is not executable until
all its direct predecessor tasks are executed, and after it is executed, only one
of its direct successor tasks can be executed.

3) Or-In-Parallel-Out A task belongs to this class iff it is executable as long as
one of its direct predecessor tasks is executed, and after it is executed, all its
direct successor tasks can be executed in parallel.

4) Or-In-Conflict-Out A task belongs to this class iff it is executable as long as
one of its direct predecessor tasks is executed, and after it is executed, only
one of its direct successor tasks can be executed.

Without loss of generality, a task with only one direct predecessor is treated as an
“And-In” task, and a task with only one direct successor treated as a “Parallel-Out”
task. Denote by set TAP for all And-In-Parallel-Out tasks, TAC for all And-In-Conflict-
Out tasks, TOP for all Or-In-Parallel-Out tasks, and TOC for all Or-In-Conflict-Out
tasks. Then in the example workflow, we have TAP = {T1, T3, T4, T6, T7, T8}, TAC =
{T5}, TOP = {T2}, and TOC = ∅.

3.2 Build a Well-Formed Workflow

Theorem 1: Given a confusion-free, well-formed workflow WF = (T, P, C, A, S0), by
adding a new task Tk to it, the obtained new workflow is denoted by WF’ = (T’, P’,
C’, A’, S0’). Then WF’ is also a confusion-free workflow if it matches one of the fol-
lowing cases:

1) *Tk = Tk* = ∅, i.e., p’ki = p’ik = 0 for all Ti ∈ T’ \ {Tk}.

2) *Tk = ∅, Tk* ≠ ∅, and ∀Ti ∈ Tk*, if A(Ti) is defined in the form of (1) in Defi-
nition 10, then A’(Ti) is also defined in the form of (1) by adding Tk to the only
set. If A(Ti) is defined in the form of (2), then A’(Ti) is also defined in the form
of (2) by adding {Tk} to A(Ti).

3) *Tk ≠ ∅, Tk* = ∅. If A(Tk) is defined in the form of (1) in Definition 10, then
there exists a Sa in WF such that all tasks in *Tk have state value of 2; If A(Tk)
is defined in the form of (2) in Definition 10, then there exists a Sa in WF such
that at least one task in *Tk has state value of 2. In addition, ∃Ti ∈ *Tk, if Ti

triggers two or more conflicting tasks, then Tk conflicts with each of these
tasks, otherwise, ckj = 0 for any Tj ∈ Ti*.

4) *Tk ≠ ∅, Tk* ≠ ∅, with all other conditions appear in 2) and 3). Besides, ∀Ti ∈
Tk*, if Ti is also a predecessor of Tk (i.e., Tk introduces a loop), then A(Ti) can
only be in the form of (2) in Definition 10.

An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis

149

Proof:

Case 1): Tk is an isolated task. Based on Definition 3, Tk will not be in any other
task’s pre-condition set, so it has no impact to the original workflow WF, and the two
structural conditions of confusion-free workflows are all met in WF’. Because Tk has
no predecessors, so it is executable in S’0. Since WF is well-formed, there must be an
ending state Sq∈ R(WF), then state S’q = Sq U {S(Tk) = 2} is an ending state of WF’.
Therefore, WF’ is confusion-free.

Case 2) In this case, Tk has no predecessors, so it is executable in S’0. We need to
make sure that all tasks that are successors to Tk are still executable after adding in Tk.
∀Ti ∈ Tk*, if A’(Ti) is defined in the form of (1) by adding Tk to the only set, then that
WF is confusion-free indicates that there is a state Sa in WF such that all tasks in *Ti
have state value of 2. Because Tk is unconditionally executable, so there must be a
corresponding state Sa’ in WF’ such that Sa’ = Sa U {Sa’(Ti) =2}. Thus Ti is still execu-
table in WF’. If A’(Ti) is defined in the form of (2) by adding {Tk} to A’(Ti), then the
execution of any task in *Ti in WF’ can still trigger Ti as it does in WF, and Tk is just
an additional task to trigger Ti. Thus Ti is still executable in WF’. Since WF is well-
formed, there must be an ending state Sq∈ R(WF), then state S q’ = Sq U {S(Tk) = 2} is
an ending state of WF’. In addition, A’(Ti) is defined in one of the two desired forms.
Therefore, WF’ is also confusion-free.

Case 3) In this case, Tk has no successors. The other conditions guarantee already
that task Tk is executable, and the two structural conditions of confusion-free work-
flows are also met. We only need to prove that the introduction of Tk won’t cause
other tasks to become non-executable. It is easy to understand that the state transition
behavior of WF’ from any state S’ in which S’(Tk) = 0 is not affected due to the intro-
duction of Tk. Suppose that at state Sa’ we have Sa’(Tk) = 1 and Tk is triggered by Ti (Ti

∈ *Tk). If all tasks triggered by Ti are able to execute in parallel with Tk (ckj = 0 for
any Ti ∈ Ti*), then Tk has no impact to the execution of other triggered tasks. The
other possibility is that Tk is in conflict with any other task triggered by Ti. In this
case, if Tk is not chosen for execution, the state transition behavior from S’ will be just
like the case in state S = S’ \ { S’(Tk) = 1} of WF. All these suggests that WF’ is also a
confusion-free workflow.

Case 4) This case is a combination of Case 2 and Case 3. The WF’ can be proved
confusion-free by jointly applying the reasoning for these two cases if Tk does not
introduce a loop to the workflow, In case Tk introduces a loop, since we already re-
strict that ∀Ti ∈ Tk*, if Ti is also a predecessor of Tk, then A(Ti) can only be in the
form of (2) in Definition 10, Ti can be triggered as it is without Tk in place. Adding Tk
simply introduces one more trigger to Ti. So the loop does not cause any task un-
executable.

The theorem is proved.
Theorem 1 can serve as a rule in building a confusion-free workflow. At the be-

ginning, the task set is empty. When the first task is introduced, the workflow is well-
formed, because this single task has no predecessors and successors and it is executa-
ble. Then we add a second task. This second task can either be an isolated one (Case 1
of Theorem 1), or be a successor of the first task (Case 2 of Theorem 1), or be a
predecessor of the first task (Case 3 of Theorem 1), or even be both a predecessor

 J. Wang et al.

150

and successor to the first task (Case 4 of Theorem 1). Since the first task is the only
possible successor or predecessor to the second task, the new workflow (with these
two tasks) is still confusion-free. When we continue to introduce more tasks to the
workflow, as long as we make sure each new task is added in such a way that it satis-
fies the conditions defined in one of the four cases, then the new workflow is guaran-
teed to be confusion-free.

4 Tool Support

We are currently in the process of developing a visual tool to automate the workflow
editing and enactment. In this section we briefly introduce the tool.

The tool has three components: an editor, a simulator and a validator. The editor
enables users to create a workflow with an easy to use drag and drop interface. As
shown in Fig. 5, the editor has a Tool Box which contains all the objects available for
dragging and dropping into the Working area, with each of the four types of tasks
represented by a unique icon. Connections add the directional flow from one task to
the next. Every connection must have one start task and one end task. When a user is

Fig. 5. Screenshot of the workflow editor

An Intuitive Formal Approach to Dynamic Workflow Modeling and Analysis

151

adding a connection, the working area will change into “connection start mode”. The
user will then select the start task by clicking on an existing task in the working area.
Once a start task has been selected, the working area will change to “connection end
mode”. A phantom connection will follow the user until an end task is selected or the
connection adding has been cancelled. Once the connection has been established, the
connection is drawn and the working area returns to “normal mode”.

Each object in the working area has general properties such as position, text, de-
scription among others. The general Properties area allows the user to see at a glance
and change the properties of an object. This Properties area will be populated with
the currently active object. Specially, the properties of each task can be seen by right-
clicking a task and selecting the Task Properties. The task properties will show the
tasks that the current task is triggered by, tasks that this task triggers, any conflicts
with this task, and any business rules associated with the task.

A complete workflow can be saved as either an XML file or an image.
The simulator allows users to simulate the execution of a workflow. The users can

set the simulation speed with the Speed command, and have options on Play, Back,
Pause, and Stop.

The validator allows users to verify if their workflows are well-formed. The users
can perform the validation at any stage of workflow construction.

5 Concluding Remarks

In this paper we presented a new formal, yet intuitive, approach for the modeling and
analysis of workflows. We introduced our representation of tasks, relations among
tasks, state transition rules, and the expressive power of this framework that enables
the creation and enactment of workflows. We have showed our definition of well-
formed workflows and how to build them, such that whenever a new task is added, it
will not alter the well-formedness property of the workflow.

We are currently developing theorems on deleting a task from a well-formed
workflow and changing some business rules in a well-formed workflow such that the
modified workflow is still well-formed. Meanwhile, we are designing and implement-
ing a visual tool to automate the workflow editing and enactment. The tool will allow
the recording of an audit log that will permit the analysis and improvement of current
workflows. We will also be working on extending our approach to the inter-
organizational workflow modeling and analysis, to be able to represent the interac-
tions between different people and organizations that need to work together for
achieving different business goals.

References

1. N. R. Adam, V. Atluri and W. Huang, “Modeling and Analysis of Workflows Using Petri
Nets”, Journal of Intelligent Information Systems, pp. 131-158, March 1998.

2. P. C. Attie, M. P. Singh, A. Sheth and M. Rusibkiewicz, “Specifying Interdatabase De-
pendencies,” Proceedings 19th International Conference on Very Large Database,
pp.134-145, 1993.

 J. Wang et al.

152

3. P. Dourish, “ Process Descriptions as Organizational Accounting Devices: The Dual use of
Workflow Technologies”, Paper presented at GROUP'01, (ACM), Sept. 30-Oct. 3, 2001,
Boulder, Colorado, USA

4. P. Lawrence, editor, “Workflow Handbook 1997, Workflow Management Coalition”, John
Wiley and Sons, New York, 1997.

5. D.C. Marinescu, Internet-Based Workflow Management: Towards a Semantic Web, Wiley
Series on Parallel and Distributed Computing, vol. 40, Wiley-Interscience, NY, 2002

6. D. Rosca, S. Greenspan, C. Wild, “Enterprise Modeling and Decision-Support for Auto-
mating the Business Rules Lifecycle”, Automated Software Engineering Journal, Kluwer
Academic Publishers, vol.9, pp.361-404, 2002.

7. M.P. Singh, G. Meredith, C. Tomlinson, and P.C. Attie, “An Event Algebra for Specifying
and Scheduling Workflows,” Proceedings 4th International Conference on Database Sys-
tem for Advance Application, pp. 53-60, 1995.

8. W.M.P. van der Aalst, “Verification of Workflow Nets”, Proceedings of Application and
Theory of Petri Nets, Volume 1248 of Lecture Notes in Computer Science, pp. 407-426,
1997.

9. W.M.P. van der Aalst, “Three Good Reasons for Using a Petri Net-Based Workflow Man-
agement System”, Proceedings of the International Working Conference on Information
and Process Integration in Enterprises (IPIC’96), pp. 179–201, Nov 1996.

10. W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, “Business Process Manage-
ment: A Survey.” International Conference on Business Process Management (BPM
2003), volume 2678 of Lecture Notes in Computer Science, pages 1-12. Springer-Verlag,
Berlin, 2003.

11. J. Wang, Timed Petri Nets: Theory and Application, Kluwer Academic Publishers, 1998,
ISBN: 0-7923-8270-6.

12. D. Wodtke and G. Weikum, “A Formal Foundation for Distributed Workflow Execution
Based State Charts,” Proceedings 18th International Conference on Database theory,
1997.

13. M.D. Zisman, “Representation, Specification and Automation of Office Procedures”, PhD
thesis, University of Pennsylvania, Warton School of Business, 1977.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

