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System assembly is one of the major issues in engineering complex component-based sys-
tems. This is especially true when heterogeneous, COTS and GOTS distributed systems,
typical in industrial applications, are involved. The goal of system assembly is not only
to make constituent components work together, but also to ensure that the components
as a whole behave consistently and guarantee certain end-to-end properties. Despite re-
cent advances, there is a lack of understanding about software composability, as well as
theory and techniques for checking and verifying component-based systems. A theory
of software system constraints about components, their environment and about system
as a whole is the necessary foundation toward solid understanding of the composability
of component-based systems. In this paper, we present a systematic approach for con-
straint specification and constraint propagation in concert with design refinement with a
novel technique to ensure consistency between system-wide and component constraints
in a design composition process of component-based systems. The consistent constraint
propagation is used in our approach to drive progressive verification of the design. It
allows us to verify overall design composition without interference of internal details
of component designs. Verification is done separately at architectural and component
levels without having to compose results of component analyses. A component can be
safely replaced with alternative design without re-verifying the overall system composi-
tion so long as the replacement conforms to the corresponding interface and component
constraint(s).

Keywords: System design; system composition; constraints verification; Petri nets;
temporal logic.
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1. Introduction

The concept of constraints has been widely used and is considered an impor-

tant means for developing high quality software systems. Definitions, purposes

and applications of constraints vary. However, what is common is that they repre-

sent certain conditions or properties that must be satisfied by system design and

implementation. In other words, a constraint is a required property or assertion

about a system, the violation of which will render the system unacceptable to

one or more stakeholders. For example, system constraints have been defined in the

forms of assertions, contracts, pre/post-conditions, invariants, etc. [4, 12, 16, 21, 28]

to support OO analysis and design. In [25], an elaborate set of security constraints

was presented for multilevel secure database management systems (MLS/DBMS),

and a system architecture was proposed to handle security constraint processing in

distributed MLS/DBMS environment. In [9], we introduced the concept of security

constraint patterns, which formally specify the generic form of security policies that

all implementations of the system architecture must enforce, and showed how to

use these constraints to guide the design and analysis of security systems. System

constraints can be described or specified in different forms ranging from natural

languages, to IDL [18], UML [23], OCL [28], to formal languages and notations,

e.g. temporal logic [10, 11] and Petri nets [20, 22]. To enable formal verification,

rigorously defined mathematical formalism is required. However, given the large size

of state space of software systems, even for relatively small systems, brutal force

constraints verification is impractical without the support of an effective means to

manage the complexity [8].

In this paper, we define a constraint as a system-wide property that must be

satisfied by a design. Given a composition of the system by its components, the

constraint defines the property that the components as a whole must hold under the

particular composition. Consequently, the constraints serve as the basis to enforce

traceability and consistency in design decomposition and refinement, and the basis

for verifying whether a given design conforms to the system-wide requirement that

it supposes to enforce. We are interested in how to formally assure the system-wide

constraints in design decomposition and refinement. There are numerous techniques

for formal verification in the literature. The key is how to apply these techniques

systematically in concert with the design refinement process, and how to manage

the verification process in such a way as to control the state explosion problem

associated with formal analysis, which are the focus of this paper. We present a

practical approach of verification driven by a systematic and consistent propagation

of system-wide constraints of a software system onto its components in the process

of design refinement. It should be noted that we do not consider the verification of

individual components (i.e. verifying an implementation of a component against its

design specification) in this paper since there have been numerous research efforts

and methods dealing with this research issue; however, our proposed design level

constraints propagation and progressive verification method will greatly facilitate



October 18, 2004 11:53 WSPC/117-ijseke 00175

Constraint Propagation for Component-Based Process Model 473 

 

 
Figure 1 - Framework of constraint-driven progressive verification. 
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Fig. 1. Framework of constraint-driven progressive verification.

the above individual component verification task by reducing component sizes into

manageable levels and thus provides an effective way to control the complexity of

verifying individual components.

In a nutshell, our approach for constraint propagation and verification follows

the following broad steps as shown in Fig. 1. First, we model a software sys-

tem as a composition of components without considering internal details of the

components. This model is called the system architectural model. Second, system-

wide constraints are formulated and formally specified, which define one or more

system-wide properties which the given composition of the system must satisfy.

Third, the global constraints are decomposed into component constraints that each

component must satisfy under the given system composition or architecture. How

to decompose the system-wide constraints into component constraints is subject

to problem-specific design decisions. It is an issue that should be addressed by a

design method rather than a verification method. However, our approach provides

a systematic way to ensure the consistency between system-wide and component

constraints. By combining a component constraint with the interface (denoted by

ports) of the component (defined in the architectural model), we can easily generate

a simple component model, called component requirement model, which preserves

the properties defined by the component constraints. These generated component

models are small and constant sized. In Step 4, these small component models are
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then plugged into the overall system architecture. The resultant architectural model

is verified against the system-wide constraint patterns using standard analysis tech-

niques, e.g. reachability analysis [20] and model checking [7]. This verification shows

the consistency between global and component constraint patterns under the given

system architecture (Step 1). Once the consistency between system-wide and com-

ponent constraints is verified, these component constraints serve as the basis for

component design in Step 5. A more detailed architectural or behavior model for

each component can be constructed, if necessary, and verified against the corre-

sponding constraint pattern using the same process described above. Again, any

available analysis technique can be used to verify the component model against its

constraint model.

Under this constraint-driven approach of progressive verification, a component,

which could be a composition of other components, in the design composition can

be safely replaced (in terms of verified property) by an alternative design without

re-verifying of the overall system design, so long as the replacement has the same

interface and satisfies the corresponding component constraints. It allows us to

analyze overall design composition by verifying individual components in the system

composition. Verification is done separately at architectural and component levels.

This significantly reduces the complexity. There is no need to compose the results

of analysis (once the consistency between system-wide and component constraint

patterns is established).

In this paper, two complementary formal notations, temporal logic [7] and Petri

nets [20, 26], are employed in concert with the described methodology. The former, a

popular descriptive formalism, is best suited for describing rules and constraints. By

contrast, the latter is a well-known operational model well suited for modeling the

control and composition of distributed systems. Temporal logic, more specifically

Computational Tree Logic (CTL) [10, 11], is used to describe system constraint

models. Petri nets, more specifically Place Transition Nets (P/T nets) [20], are

used to describe design composition models. These two notations are seamlessly

integrated [9, 27] in our methodology. It should be pointed out, however, the ap-

proach of the constraint-driven verification is general and independent of these two

specific formalisms.

The rest of the paper is organized as follows: In Sec. 2 we discuss in more detail

the methodology of constraint propagation and progressive verification. In Sec. 3,

we present an automatic method to convert a component constraint to its corre-

sponding component requirement model, which helps to significantly reduce the

complexity of the verification of consistency between system-wide constraints and

intermediate component constraints. In Sec. 4, we illustrate the constraint propa-

gation and progressive verification method through a communication protocol ex-

ample. Section 5 introduces our software tool for system modeling and verification.

Section 6 gives a concluding remark.
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2. A Methodology of Constraint-Driven Progressive Verification

In this section, we discuss in more detail the methodology of constraint-driven

progressive verification outlined in Fig. 1. The discussion consists of two parts.

First, we present the overall process of progressive verification driven by consistent

constraint propagation. Second, we discuss techniques for verifying the consistency

between system-wide constraints and component constraints.

2.1. Process of constraint-propagation and progressive verification

As shown in Fig. 1, the constraints propagation and verification process consists of

the following broad steps.

Step 1. Construct a top-level structural model of the system

The purpose of this step is to build the model for the top-level system architecture,

which describes the overall organization of the system, as well as the coordination

between its components. The internal structure and behavior for the components

are not included in this model. This model is constructed by decomposing the

system into subsystems or components and connections between the components.

In this paper, we use P/T nets [20] to describe a system’s architectural model

and component models. A brief introduction of the Petri net model is given in

Appendix 1.

Figure 2 shows an example of the top-level structural model of a system with

three components. As we can see, the interface that the component communicates

with the rest of the system is specified as component communication ports (denoted

graphically by half circles), including input ports (e.g., port8) and output ports

(e.g., port9), represented by Petri net places. Simple Petri net pieces are used to

define the connections among components, which represent channels of interaction

between components. Notice that at this level no internal information about a

component is revealed, which is to be established in a later design stage.

 

 

 

 

 

  

Figure 2 - Illustration of system structural model. 
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Fig. 2. Illustration of system structural model.
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Step 2. Specify system-wide constraints

At this stage, the system-wide constraints imposed on the top-level structural model

created in the previous step are formulated by formalizing required properties of

the system in terms of constraints imposed on system components and connections

between them. These constraints are specified using only the interface (ports) of the

components. By formalizing the system-wide requirements in terms of architectural

constraint, it not only removes ambiguity in the description, but also makes it

easier to detect possible inconsistency or conflict between different (competing)

requirements.

In this paper, computational tree logic (CTL) [10, 11] formulas are used to

formally define the constraints. A brief introduction of CTL is given in Appendix 2.

In the constraint specification, the CTL formulas only use ports (places) as atomic

propositions. The atomic proposition is true if and only if the port contains a token.

In the temporal structure Σ = (S, R, L), S = {M} where {M} is the set of reachable

markings of a Petri net; R is a binary relation on S, which is indicated through

firing transitions; and L is a mapping: M → PORT , where PORT is the set of

ports.

For example, we may have the following constraint for the structural model

shown in Fig. 1: AG (port1 → AF port2), which means that whenever port1 gets

a token, port2 will eventually get a token.

Step 3. Decompose system-wide constraints to components

In this step, we decompose the system-wide constraints into a set of intermediate

constraints that can be imposed on the components to guide component design.

The constraints defined on a given component specify the functionalities of that

component in terms of its contribution toward the satisfaction of the system-wide

constraints under the given architecture. Because the original constraints allow

different combinations of the intermediate constraints, the task of propagating the

system-wide constraints onto the components requires one to carefully examine and

explore the boundary among the components. This is because such propagation

effectively partitions the system-wide function to individual component functions

and determines the interface and protocols of interaction among them. For this

reason, we consider a specific choice of constraint decomposition as a design issue,

which should be made based on tradeoffs between different design considerations.

Step 4. Verify the consistency between system-wide constraints and component

constraints

Because there is no easy way to automate the constraint decomposition, we need

to verify if the intermediate constraints are consistent with the system-wide con-

current constraint, i.e., the component constraints collectively satisfy the system-

wide constraints under the given system composition represented by the structural

model. Only after these intermediate constraints are proven to be consistent with
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the system-wide constraints can it be meaningful to design the components against

these intermediate constraints. This verification is facilitated and kept manageable

by two facts: (a) the component constraints are of forms similar to the system-

wide constraints because the former are generated from the latter; and (b) the

component constraints are connected together by the known structure of the ar-

chitecture model. The problem of verifying consistency between system-wide and

component constraints can be stated as the component constraints, collectively

under the connection structure given by the architectural model, satisfy the corre-

sponding system-wide constraints.

Although showing that two arbitrary sets of temporal formulas being consistent

is a difficult problem [2], two observations help to make the problem manageable in

our context. First, the component constraints are ”derived” from the system-wide

constraints. Therefore, they share similar forms and structures. Second, we have the

connectors of the component constraints available. Armed with these two pieces of

information, we introduce a technique to check the consistency between the two

sets of temporal constraints, which consists of the following steps:

(1) Assume C to be the set of components connected together under a given system

architecture. From each constraint of component c ∈ C, we derive a small and

constant-sized PN, which we call component requirement model of c denoted

as CRM(c). CRM(c) can be constructed by translating the temporal formula

representing the component constraint into its PN form. (See Sec. 3.) Notice

that CRM(c) has the same ports as c because the formula is defined on the

ports, i.e. these ports constitute the vocabulary of the formula.

(2) We plug the set of newly created PNs {CRM(c) | c ∈ C} into the system ar-

chitecture model (also represented as a PN), which results in a complete net

model. Call this net the constraint model of the architecture. This PN represents

the model of the component constraints based on the given system composi-

tion. This implies that if this PN satisfies the system-wide constraints, then the

component constraints collectively are consistent to the system-wide constraints

based on the given system architecture.

(3) Verify if the constraint model satisfies the system-wide constraints. A number of

available techniques, e.g. reachability analysis, can be used for this verification.

Step 5. Perform incremental design and verification of the components

The completion of Step 4 has two important implications: (a) the component con-

straints can be “trusted” as the basis for component design; and (b) if every com-

ponent design conforms to its component constraints, the resulting system with

the inclusion of the component designs will automatically satisfy the system-wide

constraints. This is an important conclusion because it significantly reduces the

complexity of analysis. The component can be further decomposed, in which case,

we iterate the above steps resulting in an incremental architectural composition and

analysis process. If necessary, different decompositions that conform to the inter-
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face and constraints of a component can be developed and plugged into the system

model to evaluate different design alternatives.

2.2. Techniques for constraint verification

2.2.1. Reachability analysis

Petri nets analysis methods may be classified into the following four groups:

(1) the reachability tree method, (2) the linear algebraic approach, (3) reduction

or decomposition techniques, and (4) simulation. The first method involves essen-

tially the enumeration of all reachable markings. It should be able to apply to all

classes of nets, but is limited to “small” nets due to the complexity of the state-

space explosion. On the other hand, linear algebraic and reduction techniques are

powerful but in many cases they are applicable only to a special subclass of Petri

nets or special situations. For complex Petri net models, discrete-event simulation

is another way to check the system properties [20, 26, 29].

2.2.2. Model checking

Model checking is a technique for verifying finite state systems [7, 15]. The method

has been used successfully in practice to verify complex sequential circuit designs

and communication protocols.

Given a Kripke structure M = (S, R, L) that represents a finite state concurrent

system and a temporal logic formula f expressing some desired specification, model

checking technique either give a counter example or find the set of all states in S

that satisfy f : {s ∈ S |M, s |= f} where:

• S is a finite set of states

• R ⊆ S × S is the transition relation, with (s, t) ∈ R meaning that t is an immediate

successor of s.

• L : S → 2AP, is the valuation of atomic propositions in each state, where AP is

a finite set of atomic propositions.

In the first algorithm for solving the model checking problem, the nodes represent

the states in S, the arcs in the graph give the transition relation R and the labels

associated with the nodes describe the function L.

Model checking consisted of several tasks:

Modeling The first task is to convert a design into a formalism accepted by

model checking tool, such as using Petri nets or SMV input language to define the

system model.

Specification Specification is to state the properties that the design must satisfy.

The specification is usually given in some logical formalism. It is common to use

Temporal Logic, such as CTL, CTL∗, RTCTL for different systems.

Checking The verification is completely automatic. However, in practice, it often

involves human assistance. One such manual activity is the analysis of the results.

In case of a negative result, the user is often provided with an error trace.
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3. Constructing Component Requirement Models (CRM)

As discussed in Sec. 2, only after intermediate (component) constraints are proven

to be consistent with the system-wide constraints can it be meaningful to design

the components against these intermediate constraints. In this section, we discuss

the construction of component requirement models (CRM) as the means to verify

consistency between system-wide and component constraints. This is achieved by

replacing the internal part of a component with one very simple PN structure in such

a way that the resulting CRM satisfies the corresponding component constraint, so

that we can use the CRM to represent the component constraint in the architectural

model. The CRM is often composed of few transitions, to connect input ports and

output ports directly, while maintain its external semantics in terms of the property

specified by the component constraints. Again, refer to the Appendices for the

underlying formal notations used in this paper.

3.1. Map component constraint to simple PN

Now we consider mapping a component constraint, which specifies the relationship

between the input and output ports of the component, to a simple PN. We are in-

terested in a class of system constraints that define the causal relationships between

the inputs and outputs. Therefore, we use only a subset of CTL formulas that have

the following general form:

AG(I → O)

where I is a propositional logic formula whose atomic propositions are ports, repre-

senting the inputs of the component, and O is a T -formula (see below) representing

the outputs of the component. To ease our descriptions, we first define some terms.

A G-node is a CTL element in the form of AG¬ p and an F -node is a CTL ele-

ment in the form of AF p, where p is a restricted propositional logic formula whose

atomic propositions are those ports and their negations. A T-Formula is defined as

follows:

• Each AG¬ p is a T -formula;

• Each AF p is a T -formula;

• If p and q are T -formulas, so are p ∧ q and p ⊕ q.a

Both G-node and F -node are called atomic node or a T -node in T -formula.

Notice that in a T -formula, existential quantifier E is not used. That is because

it only means that there is such a possibility for the formula following it being true.

This limited information is not enough to determine properties of a component and

therefore meaningless in modeling a system in our context.

The process of mapping a CTL formula to a simple PN proceeds in four steps:

(a) Construct the PN representation of I in the component constraint, called I-net;

aSymbol ⊕ stands for “exclusive or”.
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(b) Construct the PN representation of O in the component constraint, called

O-net;

(c) Combine I-net and O-net together to form the PN representation of the

constraint; and

(d) Remove redundant nodes in the resulting PN.

The PN corresponding to a given formula can be constructed recursively. For

any proposition Pi which appeared in a formula, we use a PN to represent it, and its

logic value is indicated by a particular place pi in the net. If pi is marked, Pi is true;

If pi is unmarked, Pi is false. We call pi the characterization place of proposition Pi.

Moreover, if Pi appears in formula I, pi is the source place of its PN representation,

i.e., the preset of pi is empty; if Pi appears in formula O, pi is the absorbing place

of its PN representation, i.e., the postset of pi is empty.

Two kinds of transitions are used in the PN representation of a constraint. One

is temporal transition, which represents the change from the state indicated by

the pre-condition of a constraint to the states indicated by the post-condition, and

whose firing represents a real action. The other is logic transition, which is only used

to describe the relationship between primitive places (ports) and characterization

places, and whose firing does not cause any real state change. Pictorially, a temporal

transition is described by a thick bar, while a logic transition is described by a thin

bar.

Both characterization places and logic transitions are temporary nodes, for they

are introduced in the process of constructing a CTL formula’s PN representation.

When the construction is finished, we will apply some rules to remove these tem-

porary nodes. So in the final PN representation of a CTL formula, there are only

ports and temporal transitions.

3.1.1. Construct I-net of a component constraint

In Table 1, we list the PN construction for typical terms in an I-net. For example,

for a compound proposition Pi ∧ Pj , where the characterization places of Pi and

Pj are pi and pj , respectively, we introduce a new transition Tij and a new place

pij and then build the PN as shown in the table to represent this formula. The

characterization place of the formula is pij . From the PN we know that once both

pi and pj are true (marked), pij becomes true (marked) at the same time. Since pi

and pj represent formula Pi and Pj respectively, pij represents the formula Pi ∧Pj .

Based on the table, we can recursively construct the I-net of a component

constraint. This process is illustrated in Sec. 3.2.

3.1.2. Construct O-net of a component constraint

Constructing an O-net is to map a T -formula to PN. We first map a P formula in

each T -node (G¬P or FP ) to a PN and then map the T -node to a PN. Finally,

we construct a PN for the T -formula.
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Table 1. Construct I net of a component constraint.

Term in I formula PN representation
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In Table 2, we list the PN construction for typical terms in a P formula in a

T -node. For a compound proposition Pi ⊕ Pj , where the characterization places of

Pi and Pj are pi and pj , respectively, we introduce two new immediate transitions

Ti and Tj , and a new place pij and then build the PN as shown in the table to

represent this formula. The characterization place of the formula is pij . Based on

the table, we can recursively construct the PN of the P formula of a T -node in a

component constraint. This process is illustrated in Sec. 3.2.

Table 3 lists the PN representation for G-node, F -node and their composition

in a T -node. For example, if O in the component constraint AG(I → O) is an

F -node AF P , assuming that the characterization place of the PN of formula P is

p, we construct a new place denoted by pi and a new transition Ti to form the PN

as shown in the table to represent the formula. The characterization place of the

formula is pi.

3.1.3. Combine I-net and O-net

Once we generate the I-net and O-net of a component constraint, we are ready to

construct the PN for the constraint by combining its I-net and O-net. Assume that

the characterization places of its I-net and O-net are PI and PO, respectively. We

introduce a new immediate transition denoted as Tc to build up the PN as shown

in Fig. 3.
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Table 2. Construct the PNs of P formulas in T -nodes.

Term in P formula in T -node PN representation

Atomic proposition pi (pi is a port)

 

 

Tables and figures: 
 

Table 1.  Construct I net of a component constraint 

Term in I formula PN representation 

Atomic proposition pi (pi  is a port) 
 

 

Compound proposition Pi ∧ Pj, where 

the characterization places of Pi and Pj 

are pi and pj, respectively  

 

 

Compound proposition Pi∨Pj, where 

the characterization places of Pi and Pj 

are pi and pj, respectively 

 

 

pi 

PN of Pi 

pi 

PN of Pj 

pj 

pij 

  

Tij 

PN of Pi 

pi 

PN of Pj 

pj 

pij 

Ti 

Tj 

Compound proposition Pi ∧ Pj , where
the characterization places of Pi and
Pj are pi and pj , respectively

 

 

 

pij 

PN of Pi  

p
i 

PN of Pj 

p
j 

Tij 

Compound proposition Pi ⊕Pj , where
the characterization places of Pi and
Pj are pi and pj , respectively

 

 

 

p
ij 

PN of Pi 

p
i 

PN of Pj 

pj 

Ti 

Tj 

Table 3. The PN representation for G-node, F -node and their composition in a T -node.

Term in T -node PN representation

F -node AF P , where the character-
ization place of the PN of formula
P is p

 

 

 
Table 3.  The PN representation for G-node, F-node and their composition in a T-node. 

Term in T-node PN representation 

F-node AF P, where the 

characterization place of the PN of 

formula P is p  

 

G-node AG¬P, where the 

characterization place of the PN of 

formula P is p  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p
i 

p 

PN of P 

Ti 

pi 
p 

PN of P 

Ti 

G-node AG¬P , where the character-
ization place of the PN of formula
P is p

 

 

 
Table 3.  The PN representation for G-node, F-node and their composition in a T-node. 

Term in T-node PN representation 

F-node AF P, where the 

characterization place of the PN of 

formula P is p  

 

G-node AG¬P, where the 

characterization place of the PN of 

formula P is p  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pi 

p 

PN of P 
Ti 

p
i 

p 
PN of P 

Ti 

 

 

Figure 3 - PN for a component constraint. 
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Fig. 3. PN for a component constraint.

3.1.4. Remove temporary nodes

The TPN obtained in Sec. 3.1.3 may contain some temporary nodes. To remove

them, we developed four rules based on the principle of equal reachability regard-

ing original nodes, shown in Fig. 4. Applying these rules results in the removal
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Fig. 4. Rules for removing temporary nodes.

of all temporary nodes introduced in representing a constraint formula by a PN.

Particularly, the first rule eliminates temporary nodes introduced by the PN rep-

resentation of a compound proposition in the form of Pi ∧ Pj in an I-formula. The

second rule removes temporary nodes introduced by the PN representation of a com-

pound proposition in the form of Pi ∨ Pj in an I-formula. The third rule removes

temporary nodes introduced by the PN representation of a compound proposition

in the form of Pi ∧ Pj in a P -formula. The fourth rule removes temporary nodes

introduced by the PN representation of a compound proposition in the form of

Pi ⊕ Pj in a P -formula. Besides, applying any of the four rules will also remove

the temporary nodes introduced by combining I-net and O-net. In the case that a

compound proposition is a mixture of the forms of propositions listed in Table 1 or

Table 2, we can jointly apply more than one rule to remove the temporary nodes.
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3.2. Example

Suppose that the constraint:

AG(PT1 ∧ PT2 ∧ PT3 → AF (PT4 ∧ PT5 ∧ PT6))

is defined on the component shown in Fig. 5(a). If the constraint has been verified

being true, we can reduce the component based on the logic formula that specifies

the constraint. Figure 5(b) shows the I-net corresponding to the constraint, where

place p12 is the characterization place of formula PT1∧PT2, and pI the character-

ization place of PT1∧PT2∧PT3. Similarly, Fig. 5(c) shows the PN representation

of formula PT4 ∧ PT5∧ PT6, where place p45 is the characterization place of for-

mula PT4 ∧ PT5, and p456 the characterization place of PT4 ∧ PT5 ∧ PT6. By

introducing to Fig. 5(c) a new place p0 and temporal transition, we obtain the PN

of the T -node AF (PT4∧PT5∧PT6) as shown in Fig. 5(d), which is also an O-net

of the constraint. Combining Figs. 5(b) and (d) together gives Fig. 5(e). Removing

redundant nodes using the rules in Fig. 4 gives Fig. 5(f), which is the reduced PN

based on the constraint.

4. Modeling and Analysis of Communication

Protocols An Example

In this section, we illustrate the application of our methodology for constraint prop-

agation and progressive verification to the modeling and analysis of communication

protocols. As we know, Ethernet is one of the most commonly used technologies in

building computer networks. Many methods have been developed for the evalua-

tion of Ethernet protocol. These methods fall into two classes: one is global models,

which take care of strong interactions between all the stations of a network, such

as queuing model [1]; the other is isolation models, which describe the complex be-

havior of each station, but give accurate results when interactions between stations

are low, such as the semi-Markov model [17]. We build and analyze an isolation

model of the protocol using the methodology described in the following sections.

The transmission protocol in Ethernet is run by two processes [26]:

• The Transmitter Process (FTP) manages the different operations of the protocol:

data encapsulation, transmission starting, collision handling with Collision Detect

Signal, number of attempts increasing, and backoff operations.

• The Deference Process (DP) is used to delay the frame transmission when the

channel is busy. The DP becomes active when the Carrier Service Signal is

switched on. Its busy period ends when the inter-frame spacing operation is

done.

4.1. Architectural model of the ethernet protocol

As is shown in Fig. 6, its architecture model is composed of two components: TP

(transmitter process) and DP (deference process). Descriptions on ports and tran-

sitions are given in Table 4.



October 18, 2004 11:53 WSPC/117-ijseke 00175

Constraint Propagation for Component-Based Process Model 485

 

PT1 

PT2 

PT3 

PT4 

PT5 

PT6 

AG(PT1 ∧ PT2 ∧  PT3→ AF  (PT4 ∧  PT5 ∧ PT6)) 

PT1

p12

PT2 pI

 (b)

p456

PT4

p45

PT5

PT6

 (c)

p456

PT4

p45

PT5

PT6

 (d)

pO

 (e)

PT1

p12

PT2

PT3

pI

I-net

p456

PT4

p45

PT5

PT6

pO

O-net

(f)

PT1

PT2

PT3

 PT4

 PT5

 PT6

PT3

 (a)

Fig. 5. (a) A component, (b) PN of formula PT1 /\ PT2 /\ PT3 (I-net of the constraint), (c) PN of
formula PT4 /\ PT5 /\ PT6, (d) PN of T-node AF (PT4 /\ PT5 /\ PT6) (O-net of the constraint),
(e) PN of the constraint with redundant nodes, (f) Final reduced PN of the component.

(a)

PT1 
p

12   

PT2 

PT3 

  p
I 

(b)

p456 

PT4 

p45 

PT5 

PT6 

(c)

p45

PT4 

p45 

PT5 

PT6 

pO 

(d)

PT1 
p

12 

PT2 

PT3 

p
I 

I-net  

p
45

PT4 
p

45 

PT5 

PT6 

pO 

O-net 

(e)

 

 

 

 

 
                  Figure 5(a) - A component.  

 

 

 

 

 

 

PT1

PT2

PT3

PT4

PT5

PT6

PT1 ∧ PT2 ∧ PT3→ AF (PT4 ∧ PT5 ∧ PT6)

PT1 

p12   

PT2 

PT3 

  pI 

Figure 5(b) - PN of formula PT1 ∧∧∧∧ PT2 ∧∧∧∧ PT3.  

        (I-net of the constraint) 

p456 

PT4 

p45 

PT5 

PT6 

Figure 5(c) - PN of formula PT4 ∧∧∧∧ PT5 ∧∧∧∧ PT6. 

p45

PT4 

p45 

PT5 

PT6 

Figure 5(d) - PN of T-node AF (PT4 ∧∧∧∧ PT5 ∧∧∧∧ PT6)  

       (O-net of the constraint). 

pO 

Figure 5(e) - PN of the constraint with redundant nodes. 

PT1 

p12 

PT2 

PT3 

pI 

I-net  

p45

PT4 

p45 

PT5 

PT6 

pO 

O-net 

Figure 5(f) - Final reduced PN of the component. 

PT1 

PT2 

PT3

 PT4 

 PT5 

 PT6 

(f)

Fig. 5. (a) A component, (b) PN of formula PT1∧PT2∧PT3 (I-net of the constraint), (c) PN
of formula PT4∧PT5∧PT6, (d) PN of T -nod AF (PT4∧PT5∧PT6 (O-net of the constraint),
(e) PN of the constraint with redundant nodes, (f) Final reduced PN of the component.



October 18, 2004 11:53 WSPC/117-ijseke 00175

486 Y. Deng et al.

 

 

 

 
 

Figure 6 - Architectural model of the Ethernet protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHB

DE

Deference

Process

(DP)

DS

CHF

Transmitter

Process

(TP)

FOUT

FIN

SDP

EDP

ERR

Fig. 6. Architectural model of the Ethernet protocol.

Table 4. Ports and transitions in Fig. 6.

Port Description

FIN Acquired channel
FOUT Acquired channel while deferring busy period
CHB Channel busy
CHF Channel free
DS Deference process started
DE Deference process ended

Transition Description

SDP Start deference process
EDP End deference process

One system-wide property which the design must satisfy is that once a frame

transmission is issued, it will eventually be transmitted successfully or an exception

of too many transmissions (network overload) is raised. This system-wide constraint

can be formally specified based on the relationship between ports FIN, FOUT and

ERR as:

AG(FIN → AF FOUT ⊕ ERR) . (1)

4.2. Intermediate component constraints

In order to be able to design a component independent of the rest of a system, it is

desirable that there is a set of constraints to completely describe what properties of

the component are expected by its environment. Such properties are highly expected

when we conduct the design of complex concurrent systems.

Based on the component control flows and a rational consideration of job process

timing delays of components, we derived the following intermediate constraints:

TP:

AG (FIN → AF FOUT ⊕ ERR ⊕ CHB) . (2)

(When a frame of message is due for transmission, one and only one of the

following three events will happen: (a) the frame is directly transmitted out, (b) an



October 18, 2004 11:53 WSPC/117-ijseke 00175

Constraint Propagation for Component-Based Process Model 487

error is detected for too many retransmits, and (c) a deference process is invoked

or the frame is directly transmitted out.)

AG (CHF → AF FOUT ⊕ ERR ⊕ CHB) . (3)

(When a deference process is finished, one and only one of the following three

events will happen: (a) the frame is directly transmitted out, (b) an error is detected

for too many retransmits, and (c) a deference process is invoked or the frame is

directly transmitted out.)

DP:

AG (DS → AF DE) . (4)

(When a deference process is invoked, the process ends eventually.)

As an important principle of system modeling and design, the derived intermedi-

ate constraints should be consistent with the system-wide constraints. Only under

this condition, the design and development of components against their compo-

nent constraints is meaningful. The next section presents such a consistency check

procedure.

4.3. Consistency verification among component constraints and

global constraint

Constructing the constraint models of components in the Ethernet protocol and

plugging them into the architecture model, we obtain the architecture constraint

model as shown in Fig. 7. In this figure, transitions TP1, TP2 and TP3 are intro-

duced by building the PN representation of the component constraint of Formula

(2), and transitions TP4, TP5 and TP6 introduced by building the PN represen-

tation of the component constraint of Formula (3). Based on this model, we can

easily prove that the system-wide constraint is satisfied (if we put an initial token

into place FIN, we know the token will eventually move into place FOUT).

 

CHB 

DE 

DS 

CHF FOUT 

FIN TP3 

TP1 TP6 

TP4 

SDP 

EDP 

DP TP2 TP5 

Fig. 7. Architecture constraint model of the Ethernet protocol

Fig. 7. Architecture constraint model of the Ethernet protocol.
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4.4. Component modeling and verification

Because we have already verified that the derived component constraints are con-

sistent with the system-wide constraints, we are ready to design each component

against its component constraints. In this section, based on the control flow of com-

ponents TP and DP illustrated in Figs. 8 and 9, respectively, we build their PN

models, and verify if they satisfy the component constraints defined on them.

4.4.1. Petri net model of component TP

The PN model of component TP is shown in Fig. 10. The TP is ready to receive

data from the upper layer protocol (place FIN marked), consequently no frame is
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in Data Link Layer and no frame is waiting to be sent (NFW marked). The TP

encapsulates data (transition DE fired) when the Data Link Layer is required for

data transmission. Now a frame is waiting to be sent (FW marked). When DP is not

differing (NDEF marked) the FTP starts transmission (TST fired) and watches for

collision (WTC marked), consequently the frame is no longer waiting (NFW marked

again); otherwise the deference process starts (CB fires and CHB marked).

If no collision occurs during the slot time (NCOL fired) then the channel is ac-

quired (AC marked). The TP reinitializes (RI fired) the number of possible attempts

to sixteen (NPA marked with sixteen tokens) and ends the concurrent transmission

(ECT fired). Then FTP is ready to receive new data (RTD marked).

If at least one collision occurs during the slot time (COL fired) the channel is not

acquired (NAC marked) and the number of failed attempts is incremented (one more

token from NPA to NFA when COL is fired). If sixteen attempts have failed (sixteen

tokens in NFA) FTP is aborted with excessive collision error (ECE fired) and is

ready again to receive upper layer data (RTD marked). On the contrary (NECE

fired), TP computes backoff delay (BOD marked), and waits for the corresponding

time (WBOT fired), then it becomes ready to retransmit the frame (RTR marked).

At this point no frame is waiting (NFW marked), TP retransmits the frame (FR

fired), and again a frame is waiting to be sent (FW marked). Now, the TP can

proceed as before.

Notice that transitions RI and ECE are represented with a box instead of a bar,

indicating that they are transitions with “high firing priority”. When both NFA and
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AC are marked, RI will fire before ECT. The firing of NFA resets the maximum

retry attempts after collision to 16 times. Similarly, when NFA contains 16 tokens

and NAC is marked, ECE will fire before NECE. The firing of ECE remarks the

failure of frame transmission due to excessive collision error.

4.4.2. Petri net model of component DP

The DP model is constructed in the same way, which is given in Fig. 11.

4.4.3. Component verification and discussion

To verify the component constraint of formula (2) defined on TP, we put an initial

token into place FIN at the PN model of Fig. 10, which, combining with the token

distribution in other places, indicates that a new frame arrives at the transmitter

for transmission, and the transmitter is ready to handle it. We can use the reacha-

bility analysis method for PNs to trace the progress of the PN states. Doing so, we
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Table 5. Legends of places and transitions of the

GSPN in Fig. 10.

Place Description

AC Acquired channel
BOD Backoff delay
CHB Channel busy

CHF Channel free
FIN Frame in
FOUT Frame out
FW Frame waiting
NAC Non acquired channel
NFA Number of failed attempts
NFW No frame waiting
NPA Number of possible attempts
RTD Ready to transmit data
RWIS Ready to wait interframe spacing
RTR Ready to retransmit
WFC Watch for collision
ERR Error for too many retransmits

Transition Description

CB Channel found busy

COL Collision happens
COLD Collision while deferring busy periods
DE Data encapsulation
DST Deferring slot time
ECE Excessive collision error
ECT End of current transmission
FR Frame to transmit
GRR Get ready for retransmitting
NCOL No collision
NCOLD Collision while deferring busy periods
NECE Non excessive collision error
RI Retransmit
SDEF Start deference process
TST Transmitting slot time
WBOT Wait Backoff time
WIFS Wait interframe spacing

 

 

 

 

 

Figure 11 - PN model of the deference process. 

COLD

DST

ECTD

NCOLD

ACD

   DS

  DE

WFCD

Fig. 11. PN model of the deference process.
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Table 6. Legends of places and transitions of the PN in Fig. 11.

Place Description

ACD Acquired channel while deferring busy period
WFCD Watch for collision while deferring busy period

Transition Description

DST Deferring slot time
NCOLD Collision while deferring busy periods
ECTD End of concurrent transmission while deferring busy period

find that the net will end at three possible absorbing states. The first state is

characterized by the fact that the token initially stored in FIN disappears, place

FOUT is added a token, and the token distribution in all other places remains

unchanged. The second state is characterized by the fact that the token initially

stored in FIN disappears, place ERR is added a token, and the token distribution

in all other places remains unchanged. The third state is characterized by the fact

that the tokens initially stored in FIN and NFW disappear, place CHB is added

a token, and the token distribution in all other places remains unchanged. This

result is consistent with the component constraint of formula (2). If we initially put

a token into place CHF and remove the token from NFW, the reachability analysis

will lead to the same three absorbing states, which is consistent with the component

constraints of formula (3). In the same way, we can easily verify the constraint

defined on component DP. The component constraints can also be verified by using

a model checking tool.

5. Conclusion

System assembly is one of the major problems in engineering large-scale component-

based systems. This is especially true for heterogeneous, COTS and GOTS-based

distributed systems, which are typical in industrial applications. The problem of

system assembly is not only to make constituent components work together, but

also to ensure that the components as a whole behave consistently and guarantee

certain end-to-end properties. To achieve these, a theory of software system con-

straints about components, their environment and about the system as a whole

is the necessary foundation toward solid understanding of the composability of

component-based systems.

Toward this end, we have presented an approach to use software system con-

straints and consistent constraint propagation to drive progressive verification of

system design and refinement. For general systems, decomposition of a global con-

straint of a system to its constituent components is dictated by the way the system

is decomposed, which is a delicate design decision and cannot be automated based

on today’s technology. Consequently, how to ensure consistency between system-

wide constraints and decomposed component constraints under a given composition
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architecture is an important issue that must be addressed before component con-

straints can be used meaningfully to guide component design and analysis. Our

approach provides a systematic way to verify the consistency by leveraging the

structure of system composition, which can be automated. We have shown that

such consistent constraint propagation allows us to progressively verify system-wide

properties by means of showing individual components satisfying their correspond-

ing component constraints. Because no composition of the results of component

verification is necessary, it provides an effective means to manage the complexity

of analysis. In terms of the verified properties, this approach allows a component

model in the design to be safely replaced with interface- and constraint-conforming

alternative models without requiring re-verification of overall design.

In this paper, Computational Tree Logic and Petri Nets are used as the underly-

ing formalisms to describe system constraints and design compositions, respectively.

The methodology presented here, however, is independent of individual formal nota-

tions, and can thus be used in conjunction with other appropriate formal notations.

We believe that the approach presented in this paper represents a positive step

toward a methodology for formal design and analysis of dependable and predictable

software systems. A unified constraint theory is needed to provide taxonomy of ma-

jor types of constraints and their properties. In addition to the type of constraints

described in this paper, research is needed to explore how to use the presented

approach to address other type(s) of constraints. Furthermore, we will study how

to combine our design level constraints verification with individual component im-

plementation verification. These are subjects of ongoing and future investigation.
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Appendix 1. Overview of Petri Net Notation

A Petri net [20, 22] is a 5-tuple N = (P, T, B, F, M0), where

P = {p1, p2, . . . , pm} is a finite set of places ;

T = {t1, t2, . . . , tn} is a finite set of transitions , P ∪ T 6= Ø, and P ∩ T = Ø;

B: (P ×T ) → N is a backward incidence function or input function that defines

directed arcs from places to transitions, where N is the set of nonnegative integers;

F : (P ×T ) → N is a forward incidence function or output function that defines

directed arcs from transitions to places; and

M0: P → N is the initial marking.

In terms of graphical representation, a place is denoted by a circle; and a tran-

sition by a box. Places and transitions are connected by directed arcs which specify

the data or control flow. The execution of a Petri net is reflected by the change of

marking, which is an assignment of tokens to the places. The change of markings

represents the shifting of states of a system, which is triggered by firing transitions.

A transition is able to fire only if it is enabled. A transition is said to be enabled

if each input place of it has no less tokens than the weight of the arc from the place

to it, i.e., M(p) ≥ B(t, p) for any p in P . A Petri net executes by firing enabled

transitions. A firing of an enabled transition t removes from each input place p the

number of tokens equal to the weight of the directed arc connecting p to t. It also

deposits in each output place p the number of tokens equal to the weight of the

directed arc connecting t to p. Mathematically, firing t at M yields a new marking

M ′(p) = M(p) − I(t, p) + O(t, p) for any p in P .

As a mathematical tool, Petri nets possess a number of properties. These prop-

erties, when interpreted in the context of the modeled system, allow the system

designer to identify the presence or absence of the application domain specific func-

tional properties of the system under design. Two types of properties can be distin-

guished, behavioral and structural ones. The behavioral properties are those which

depend on the initial state or marking of a Petri net. The structural properties, on

the other hand, do not depend on the initial marking of a Petri net. They depend

on the topology, or net structure, of a Petri net. From the practical point of view,

we are more interested in behavioral properties, such as reachability, boundedness,

conservativeness, and liveness.

Appendix 2. Overview of Computational Tree Logic

CTL is a propositional branching time temporal logic [10, 11]. CTL formulas are

built up from atomic propositions, propositional connectives, and temporal modal-

ities. CTL formulas use four temporal operators: Fp (“eventually p”), Gp (“always

p”), Xp (“next time p”), and pUq (“p until q”), and two path quantifier: A (“for all

futures”) and E (“there exists”). CTL formulas are defined recursively as follows:
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• Each atomic proposition p is a formula.

• If p and q are formulae, so are p ∧ q and ¬ p.

• If p and q are formulae, so are A(p U q), E(p U q), and EX p.

A CTL formula is interpreted with respect to a temporal structure M =

(S, R, L), where S is a set of states, R is a binary relation on S that is total,

and L is a labeling which assigns to each state a set of atomic propositions, those

intended to be true at the state. Intuitively, this temporal structure M represents

the reachability graph of the architecture. A full-path x = s0, s1, s2, . . . in M is an

infinite sequence of states such that (si, si+1) ∈ R for each i; intuitively, a full-path

captures the notion of an execution sequence.

Some other basic modalities of CTL are defined as abbreviations: AF q abbre-

viates A(true U q) and EF q abbreviates E(true U q). We also define the modality

G as the dual of F≤k, i.e., AG q abbreviates ¬EF ¬ p, and EG q abbreviates

¬AF ¬ p. Formula AG(p → AF q) says that whenever p is true, q is guaranteed

true in the future. AG(p → EX q) says that whenever p is true, q is guaranteed

true next. AG(p → q U r) says that whenever p is true, q is true until r becomes

true. Below we list some examples to show the descriptive power of CTL formulae:

• Safety property. AG p denotes that the constraint p always holds.

• Liveness property. AF p denotes that constraint p eventually holds.

• Sequential relationship among events. For example, every X is followed by a Y ,

and then a Z. The corresponding RTCTL constraint is:

AG (X → (AG(¬Z U Y ) ∧ AF (Z))) .




