
Ten Commandments of Formal Methods

Jonathan P. Bowen

Oxford University Computing Laboratory

Programming Research Group

Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

Email: Jonathan.Bowen@comlab.ox.ac.uk

URL: http://www.comlab.ox.ac.uk/oucl/people/jonathan.bowen.html

Michael G. Hinchey

University of Cambridge Computer Laboratory,

New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK.

Email: Mike.Hinchey@cl.cam.ac.uk

URL: http://www.cl.cam.ac.uk/users/mgh1001

Abstract

The formal methods community is in general very good at undertaking research

into the mathematical aspects of formal methods, but not so good at promulgating

the use of formal methods in an engineering environment and at an industrial scale.

Technology transfer is an extremely important part of the overall e�ort necessary in the

acceptance of formal techniques. This paper explores some of the more informal aspects

of applying formal methods and presents some maxims with associated discussion that

may help in the application of formal methods in an industrial setting. A signi�cant

bibliography is included, providing pointers to more technical and detailed aspects.

Why does this magni�cent applied science which saves work and makes life easier

bring us so little happiness? The simple answer runs: because we have not yet

learned to make sensible use of it.

{ Albert Einstein



1 Introduction

Formal methods have been advocated as one of those techniques that are likely, when cor-

rectly applied, to result in systems of the highest integrity. A number of standards bodies

are recommending their use in security- and safety-critical systems [8, 16]; this is a trend

that is likely to continue [14].

Unfortunately, while the number of projects in which formal methods are being employed

is growing rapidly, their use is still very much the exception rather than the norm [15]. This

is due to not insubstantial misconceptions [17] regarding the costs, di�culties and pay-o�s

accruing as a result of their use [13, 37].

A number of surveys of the industrial application of formal methods to `real-life' (as

opposed to `toy') problems [2, 24, 25] are helping to dispel many of these misconceptions

and to highlight the fact that formal methods projects can indeed come in on-time, within

budget, produce correct software (and hardware), that is well-structured, maintainable, and

which has involved system procurers and satis�ed their requirements (see, for example, the

case studies in [40]).

But, what makes a formal methods project successful? This is a very subjective question,

and to attempt a de�nitive answer would be ludicrous. We have, however, determined a

number of factors which we believe can have a great in
uence on whether or not a formal

methods project succeeds. Based on observations (by ourselves and others) on a number of

recently completed and in-progress projects, both successful and otherwise, we have drawn up

ten rules, or `commandments', which we feel if adhered to will greatly increase the likelihood

of success, and of reaching formal methods Nirvana.

2 Ten Commandments

I
Thou shalt choose an appropriate notation. The speci�cation language is the

speci�er's primary tool during the initial stages of system development. Obviously, as

we are concerned with formal methods projects, we are assuming that the notation used at

this stage will have a well-de�ned formal semantics.

Choosing the most appropriate notation is not as trivial as one might think. There are

now a myriad of speci�cation languages available, each making its own claims to superiority.

Many of these claims are quite valid | di�erent speci�cation languages do indeed excel when

used with particular classes of system.

There is always, necessarily, a certain degree of trade-o� between the expressiveness of a

speci�cation language, and the levels of abstraction that it supports [66]. Certain languages

may indeed have wider `vocabularies' and constructs to support the particular situations we

wish to deal with. But, they will also force us towards particular implementations, and while

they will shorten the speci�cation, they generally make it less abstract.

Languages with small `vocabularies' on the other hand, while generally resulting in

longer speci�cations, o�er high levels of abstraction and little implementation bias. Consider

Hoare's language of Communicating Sequential Processes (CSP) [42, 43], for example. The

only �rst-class entities are processes (or pipes and bu�ers, which are merely particular types
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of process). CSP speci�cations can become quite lengthy as a result, but the fact that there

are so few constructs with which to become familiar makes them readily understandable.

Likewise, there is no bias towards the implementation of communication primitives, and

CSP channels may be implemented as physical wires, buses, mailboxes, or even just shared

variables.

The vocabulary is not the only issue to consider, however. Some speci�cation languages

are just not as good as others when used with particular classes of system. Trying to

specify a concurrent system in a model-based speci�cation language such as Z [62] or VDM,

for example, is rather like using a hammer to insert a screw : : : it can be done, but it is

certainly not the best way to go about things. A process algebra such as CSP or CCS [51]

is generally far more appropriate; but these su�er from the drawback of paying very little

attention to state-based aspects of the system. This has resulted in much research aimed

at integrating process algebras with model-based speci�cation languages (e.g., [63, 68]) and

extending model-based speci�cation languages to handle concurrency and temporal aspects

(e.g., [46]).

It is important to choose a well established notation with a good user base to ensure

successful application in an industrial setting. Typically the development of a formal notation

for industrial use takes at least a decade from conception to real application. It takes this

long for the notation to be developed by researchers, taught to students, promulgated via

academic/industrial liaison, for textbooks to be written, industrial courses to be developed,

support tools to be marketed, a user community to be established, etc. The technology

transfer of formal notations, as with many new developments, is fraught with hurdles any

one of which could cause its downfall.

An important part of the general acceptance of a notation is the production of an inter-

national standard. This is of course a chicken and egg situation, since developers desire its

existence, but would rather not be involved in the expensive and time-consuming process of

its production. However it is essential to have some sort of standard to ensure a reasonably

uniform and compatible set of tools to support the notation. It may be noted that confor-

mance to a standard for a speci�cation notation is somewhat more problematic compared to

a programming language since it is inherently non-executable in the general case (otherwise

it would be a programming language!). There is some dispute about the bene�t of so-called

`executable speci�cation languages' and we refer the reader elsewhere for a discussion on this

topic [31, 38].

By relieving the mind of all unnecessary work, a good notation sets it free to

concentrate on more advanced problems, and in e�ect increases the mental power

of the race.

{ Alfred North Whitehead
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II
Thou shalt formalize but not over-formalize. Formal methods shouldn't be

employed merely to satisfy company whim, or as a result of peer pressure, as it were.

Just as the advent of `object-orientation' saw many �rms incur needless expense as they

unnecessarily converted their systems to object-oriented implementations, there is a danger

that many will unnecessarily adopt formal methods. Realistically, the �rst thing that must

be determined is that you really do need to use formal methods { whether it is for increased

con�dence in the system, to satisfy a particular standard required by procurers, or to aid in

conquering complexity, etc.

Even the most fervent supporters of formal methods must admit that there are areas

where formal methods are just not as good as more conventional methods. In User Interface

(UI) design, for example, although there have been a number of somewhat successful ap-

plications using formal speci�cation techniques [27], it is generally accepted that UI design

falls within the domain of informal reasoning.

Applying formal methods to all aspects of a system would be both unnecessary and

costly. Even in the development of the CICS system, which resulted in Oxford University

Computing Laboratory and IBM being jointly awarded a UK Queen's Award for Technolog-

ical Achievement, only about one tenth of the system was subjected to formal development.

This still resulted in 100,000s of lines of code and thousands of pages of speci�cations, and

having saved 9% over costs using conventional methods (con�rmed by independent audit) is

often cited as a major application of formal methods [56].

Having determined that one really does need formal methods, and having chosen an

appropriate notation and identi�ed those components of the system that will bene�t from a

formal treatment, one must next consider the level to which formal methods will be employed.

We identify three such levels:

1. Formal Speci�cation.

The use of formal speci�cation techniques can be of bene�t in most cases. A formal

language aids in making speci�cations more concise and less ambiguous, making it

easier to reason about them, even at an informal level. The use of such techniques

can aid in maintaining levels of abstraction and postponing complexity until a more

appropriate juncture.

They can, in essence, help us to gain greater insights into the system under construc-

tion, dispel many ambiguities, and aid in structuring both our approach to the problem

and also the resultant implementation.

Such techniques have proven to be useful in developing a software architecture for a

family of oscilloscopes [32], and for such diverse activities as formally specifying the

algorithm employed in a single-transferable voting system [52], describing the structure

of documents [21, 41] and highlighting inconsistencies in the design of the World Wide

Web [59].

2. Formal Development/Veri�cation

Full formal development is, as yet, rarely undertaken [9]. It involves formally specifying

the system under consideration, proving that certain properties are maintained, and

3



that undesirable properties are avoided, or overcome; and �nally applying a re�nement

calculus such that the abstract speci�cation is translated into more and more e�cient

and concrete representations, with the �nal representation being executable code.

The proofs involved at this stage may be formal, or informal but rigorous. Each of the

applications reported in [40] involves some level of rigorous proof.

3. Machine-checked proofs

With the advent of support tools, and in particular theorem provers or theorem check-

ers, mechanically checking proofs for consistency and well-foundedness has become

feasible.

Indeed, for certain classes of system, machine checking of proofs is well worthwhile.

Naturally, we would include safety-critical and security-critical systems in this category.

In fact, a number of bodies are advocating machine-checked proofs in their standards.

The European Space Agency, for example, advocates formal proof (in advance of test-

ing) wherever practicable, and suggests that proofs should be checked independently

to reduce the possibility of human error [14]; more and more this is likely to involve

machine-checking of proofs.

A number of formal methods incorporate theorem provers as part of the method itself.

In this category we naturally include HOL [35], Larch [36] (with LP, the Larch Prover),

Nqthm [18], OBJ [34] and PVS [54]. There are also a number of theorem provers and

support environments that incorporate theorem provers for methods such as B [1] (e.g.,

the B toolkit from B-Core), CSP [43] (e.g., FDR from Formal Systems (Europe) Ltd.),

RAISE [58] (from CRI), VDM [45] (e.g., the VDM Toolbox from IFAD) and Z [62]

(e.g., Balzac/Zola from Imperial Software Technology, and ProofPower from ICL).

Quite a lot of interest has also focused lately on tailoring theorem provers for use

with speci�c methods. For example, theorem provers for Z have been developed in

EVES [61], HOL [11], and OBJ [48].

Each of these three levels is useful in itself. One must determine, however, whether the

additional cost (in time, e�ort, manpower, tool support, etc.) is justi�ed before embarking on

full formal development and machine-checked proofs. For systems where the highest integrity

is required | that is, where loss of human life, great �nancial loss, or mass destruction of

property could be the result of a system failure | such an investment might very well be

justi�ed : : : and required!

There are two ways of constructing a software design. One way is to make it so

simple that there are obviously no de�ciencies. And the other way is to make it

so complicated that there are no obvious de�ciencies.

{ C.A.R. Hoare
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III
Thou shalt estimate costs. Formal methods are expensive when applied

extensively or for the �rst time. There is quite a learning curve in becoming au

fait with their e�ective use, and their initial introduction into a development environment

is likely to require signi�cant amounts of training, contract consultancy, and investment in

support tools. Set-up costs aside, there is considerable evidence that formal methods projects

can run as cheaply (and possibly more cheaply) than projects developed using conventional

methods.

For example, evidence of this has been provided by the award of the Queen's Award for

Technological Achievement to two formal methods projects in the UK in 1990 and 1992.

Auditors checked for the �nancial bene�ts gained as part of the award process. In the �rst,

an estimated 12 months reduction in testing time was gained in the development of the

Inmos 
oating-point unit for the T800 Transputer by formally developing the microcode

using machine-supported algebraic techniques [49]. In the second case an estimated 9% was

saved in the development costs for part of the very large IBM CICS transaction processing

system by using the Z notation to respecify the software, resulting in a reduction of errors

and an increase in quality of the code produced [44, 56].

The fact that a number of formal methods projects have come in over-budget is not

evidence that they are more expensive, but rather that we are, as yet, inexperienced in

estimating costs [13].

A number of models have been produced for project cost and project development time

estimation. By and large, these have assumed the use of conventional (structured) methods

in the development, rather than formal methods, and have based measurements on the

number of lines of executable code in the �nal implementation (a very subjective measure).

Although there have been a number of approaches suggested for obtaining metrics from

formal speci�cations (e.g., [65]), these have not as yet been extended to usable models for

cost estimation.

As yet, we must rely on models developed before formal methods became widely-used.

Perhaps the most famous of these is Boehm's COCOMO model [5], which weights various

factors according to the historical results of system development within the organization.

The intermediate model augments the basic model, adjusting it with 15 attributes which are

seen as key contributors to cost.

Many of these factors will indeed have a signi�cant e�ect on the cost of developing

systems using formal methods. The fact that formal methods are employed in systems

where the highest integrity, or reliability, is required, and are likely to be very complex

systems, or complex components of larger systems, means that the weightings for RELY

(Required Software Reliability) and CPLX (Product Complexity) are likely to be very high.

As formal methods are employed more and more in real-time systems, TIME (Execution

Time Constraints) is also likely to have a signi�cant in
uence on costs. The remainder of

Boehm's \Computer Attributes" are unlikely to have a signi�cant in
uence, nor are many

of his \Personnel Attributes". In fact, the latter are likely to need to be augmented with

new attributes, such as SEXP (Speci�cation Language Experience), MCAP (Mathematical

Capability), FMEX (Formal Methods Experience) and DEXP (Domain Experience).

While his \Project Attributes" are all likely to remain valid, MODP (Modern Program-

ming Practices) is likely to be constant, while the development of more useful tools and
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support environments [13] should greatly increase the impact of the TOOL (Software Tools)

attribute. Again, new attributes are likely to be required, such as DFOR (the percentage of

the system that has been subjected to formal speci�cation techniques and formal analysis)

and PROF (the degree of rigorous and formal proof required).

One would expect that the use of formal methods would greatly increase the weightings of

many of these attributes. It is our contention, however, that this does not mean that formal

methods themselves are expensive, but rather is symptomatic of the fact that they are used

in high-integrity systems, and it is the systems themselves that are expensive, especially if

we require high levels of con�dence in their \correct" operation.

Determining the values of these attributes is in itself problematic. The model requires

that we determine these from historical information derived from projects conducted in

the same environment, other projects conducted within the same organization, and simi-

lar projects conducted elsewhere. Even with more traditional development methods, such

information is not likely to be easily accessible. With formal methods, there will be even

greater di�culties in obtaining this information. We have not yet applied formal methods

to a su�cient number of projects to determine trends, and many formal methods projects

are in very specialized domains that are unlikely to be addressed very regularly, and are

hence very unrepresentative. Greater attention to technology transfer [64] and surveys of

formal development [24, 25] will eventually provide us with the levels of detail we require.

Elsewhere [40] we attempt to consolidate much of this information in an industrially useful

way.

We do not claim that formal methods are cheap, but that for high integrity systems

such an investment is warranted and that the returns are su�cient to justify this. We

must however be willing to make signi�cant e�orts to estimate development lead-times and

development costs. Perhaps entirely new cost models are required; but for the time-being

extending existing models is a useful starting point, provided that we allow for signi�cant

margins of error.

The advantages of implicit de�nition over construction are roughly those of theft

over honest toil.

{ Bertrand Russell

IV
Thou shalt have a formal methods guru on call. The majority of suc-

cessful formal methods projects to date have had access to at least one consultant

who is already expert in the use of formal techniques. It appears to be very di�cult to learn

to use formal methods successfully without such help until su�cient local expertise has been

built up to make this unnecessary. Examples where this has been the case include the IBM

CICS project [44] and the Inmos T800 
oating point unit for the Transputer [49].

In the case of IBM, the formal methods experts spent months at a time on-site. Training

courses were set up and gradually a signi�cant number of people at IBM became 
uent in

the application of formal techniques. Eventually a critical mass of expertise meant that IBM

became self-su�cient in the use of formal methods, no longer requiring continual access to

external experts.
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At Inmos a rather di�erent approach was adopted. Here the mathematical consultants

and the engineers remained as separate pools of expertise. However, su�cient communication

between the two groups ensured success. Unless the mathematicians and engineers can each

appreciate the role and problems of the other, success will prove elusive. A number of people

with the relevant mathematical background and training were hired at Inmos to enable

critical parts of designs to be produced and checked formally. Where deemed necessary,

external consultancy has still been called upon for speci�c problems.

Both the above approaches have proved successful and the choice for a particular orga-

nization must depend on the style of that organization and its long term aims.

Progress will only be achieved in programming if we are willing to temporarily

fully ignore the interconnection between our programs (in textual form) and their

implementation as executable code : : :

: : : In short: for the e�ective understanding of programs, we must learn to ab-

stract from the existence of computers.

{ Edsger W. Dijkstra

V
Thou shalt not abandon thy traditional development methods. There is
considerable investment in existing software development techniques and it would be

foolhardy to replace these en masse with formal methods. Instead it is desirable to integrate

formal methods into the design process in a cost-e�ective manner. One way to do this is

to investigate how an existing formal method can be combined e�ectively with an existing

structured method already in use within industry. One attempt to do this is the \SAZ"

method, a combination of SSADM and Z [57]. Of course structured methods and formal

methods each have their strengths and weaknesses and ideally the combination of the two

should make the most of the bene�ts of both. For example, formal methods allow increased

precision in a speci�cation, whereas a structured method may be more presentable to a

non-expert.

An alternative to integration of techniques is the use of formal methods to review an

existing process. It may be possible to provide feedback to a design team using traditional

development methods by having a separate team analyze the speci�cation formally early

on in the design process, thus catching many errors before they become too expensive to

correct. Z has been applied successfully and apparently cost-e�ectively using this approach

[20].

The Cleanroom approach is a technique that could easily incorporate the use of exist-

ing formal notations to produce highly reliable software by means of non execution-based

program development [29]. This technique has been applied very successfully using rigorous

software development techniques with a proven track record of reducing errors by a signi�-

cant factor, in both safety-critical and non-critical applications. The programs are developed

separately using informal (often just mental) proofs before they are certi�ed (rather than

tested). If too many errors are found, the process rather than the program must be changed.

The pragmatic view is that real programs are too large to be formally proven correct, so
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they must be written correctly in the �rst place! The possibility of combining Cleanroom

techniques and formal methods has been investigated [53].

Sometimes it is possible to combine di�erent formal methods together usefully and e�ec-

tively. For example, HOL [35] has been used to provide tool support for Z [11]. This allows

the more readable Z notation to have the bene�t of mechanical proof checking by HOL, thus

increasing con�dence in the development.

The management of a project using formal methods must be more technically aware than

is perhaps normally the case. The use of a formal approach means that code is produced

much later on in the design cycle. Far more e�ort than normal is expended at the speci�cation

stage. Many more errors are removed at this point, but early progress might not be as obvious

as in a more typical project. One way to provide feedback, particularly for a customer, might

be to produce a rapid prototype from the speci�cation [19].

But two permissible and correct models of the same external objects may yet di�er

in respect of appropriateness.

{ Heinrich Hertz

VI
Thou shalt document su�ciently. An important part of a designed system

is its documentation, particularly if subsequent changes are required. Formalizing

the documentation leads to less ambiguity and thus less likelihood of errors. In the case of

safety-critical systems, timing issues become signi�cant and methods for documenting these

are especially important [55].

Formal methods provide a precise and unambiguous way of recording the expected and

delivered system functionality, and can therefore be used as a powerful documentation aid.

The normal expectation would be that the system documentation contains both the re-

quirements and the system speci�cation in a suitable formal notation, accompanied where

appropriate with natural language narrative. The latter is particularly important for con-

veying information on system aspects which are not formally speci�ed for various reasons.

In general it is highly recommended to produce an informal speci�cation to explain the

formal description [7]. This reinforces the reader's understanding of the formal text and

connects it with the real world. If there is any discrepancy between the two, the formal

speci�cation should be taken as the �nal arbiter for the documentation since this is the less

ambiguous of the two descriptions.

Having formal documentation could be of great bene�t when the software needs to be

maintained. In the future, it could be possible to maintain the formal description rather

than the executable code directly, only undertaking redevelopment of the parts of the code

that the modi�cations necessitate [10].

You should not put too much trust in any unproved conjecture, even if it has been

propounded by a great authority, even if it has been propounded by yourself. You

should try to prove it or disprove it : : :

{ George Polya
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VII
Thou shalt not compromise thy quality standards. Up until rela-

tively recently there have been few standards concerned speci�cally with soft-

ware where formal methods are particularly applicable, such as in safety-critical systems.

Often software quality standards such as the ISO9000 series have been used instead since

these were the nearest relevant guidelines. Now a spate of standards in this area have been,

or are about to be, issued [8, 14]. Some of these are recommending or even mandating the use

of formal methods. These are not the only standards that need to be adhered to, however.

There is a grave danger that developers will look on the application of formal methods as

a means of developing correct software. On the contrary, and as we will discuss further later,

they are merely a means of achieving higher integrity systems when applied appropriately.

There is nothing magical about formal methods, and the organization must ensure that

it continues to satisfy its quality standards. This includes ensuring appropriate feedback be-

tween development teams and management; ensuring continuity of software inspection and

walk-throughs; developing, expanding and maintaining testing policies; and ensuring that

system documentation meets the quality standards that were set for conventional develop-

ment methods.

Have nothing in your houses that you do not know to be useful, or believe to be

beautiful.

{ William Morris

VIII
Thou shalt not be dogmatic. Formal methods are not a panacea; they

are just one of a number of techniques that when applied correctly have

been demonstrated to result in systems of the highest integrity, and one should not dismiss

other methods entirely. Formal methods are no guarantee of correctness; they are applied by

humans, who are obviously prone to error. Various support tools such as speci�cation editors,

type-checkers, consistency checkers and proof checkers should indeed reduce the likelihood of

human error : : : but not eliminate it. System development is a human activity, and always

will be. Software engineering will be prone to human whim, indecision, the ambiguity of

natural language, and simple carelessness.

One can never have absolute correctness, and to suggest that one can is ludicrous. On-

going debates in Communications of the ACM [30] and other fora, have been criticized on the

grounds that there is a mismatch between the mathematical model and reality [3]. This is

no great deduction | no proponent of formal methods would ever make a claim of de�nitive

correctness. In fact, one should never speak arbitrarily of correctness, but rather correctness

with respect to the speci�cation. As such, an implementation may be proven to be correct

with respect to the speci�cation derived at the outset, but if the speci�cation was not what

the procurers really intended, then their (albeit subjective) view will be that the system is

incorrect.

One must be conscious of the need to communicate with procurers and the systems users;

and one should not be afraid to admit that the speci�cation was not what was intended, and

to go back and rework portions of it. System development is by no means a straight-forward
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one-pass process. Royce's `Waterfall' model [60] of system development was abandoned be-

cause of the simplistic view it held of system development. Every developer has experienced

the need to revisit requirements and to rework the speci�cation at various stages in the

development. Ideally all inconsistencies will be discovered during implementation, or at

worst during post-implementation testing. However, in extreme cases, errors in the system

speci�cation may be uncovered during post-implementation execution.

System development is not so simple as the model proposed by Royce [33, 50], but rather

an iterative and non-linear process as exempli�ed by Boehm's `Spriral' model [6]. As such, the

developer should not make claims to having determined all of the requirements just because

a certain stage in the development process has been reached; indeed such claims should

be considered dubious even post-implementation. The developer must always be ready to

make changes to the speci�cation to meet the procurer's requirements; after all, in the best

traditions of Roland H. Macy, `the customer is always right'1. Even if the requirements have

been fully satis�ed, there are still plenty of opportunities for error.

One must always be conscious of the level of abstraction. If one is too abstract, then it is

di�cult to determine omissions and to determine what the system really is intended to do.

If one is not su�ciently abstract, however, there is a tendency, or bias towards particular

implementations. Couching the speci�cation at the appropriate level of abstraction is a

matter of experience | experience with both the speci�cation language and the application

domain. One should never be afraid to admit that the level of abstraction is not the most

appropriate and to rework the speci�cation accordingly.

Similarly, no proof should be taken as de�nitive. Hand-proofs are notorious in not only

admitting errors as one moves from one line to the next, but also at making gigantic leaps

which are unfounded. Even the use of a proof checker does not guarantee the correctness of

a proof, but it does aid in highlighting unsubstantiated jumps, and avoidable errors.

Errors are not in the art but in the arti�cers.

{ Sir Isaac Newton

IX
Thou shalt test, test, and test again. Dijkstra [26] has pointed out a major

limitation of testing | while it can demonstrate the presense of `bugs', it cannot

demonstrate their absence. Just because a system has passed unit and system testing, it

does not follow that the system will necessarily be bug-free.

That is where formal methods o�er considerable advantages over more traditional meth-

ods when developing systems where the highest integrity is required. Formal methods allow

us to propose properties of the system and to demonstrate that they hold. They allow us

to examine system behavior and to convince ourselves that all possibilities have been an-

ticipated. Finally, they enable us to prove the conformance of an implementation with its

speci�cation.

In this way, one would hope to eliminate the ubiquitous bug. Unfortunately, contrary to

the hyperbolic claims made by many so-called `experts', formal methods are no guarantee

1Of course, in the best traditions of P.T. Barnum, `there's a sucker born every minute'.
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of correctness. Certainly the use of formal methods can give increased con�dence in the

integrity of the system, and increased con�dence that the system will indeed perform as

expected, but errors still exist and bugs are still found post-implementation.

Even where full formal development is employed (i.e., the speci�cation is re�ned to exe-

cutable code) there must be a certain degree of human input. It is debatable as to whether

automatic re�nement can ever realistically be achieved, and indeed whether it ever should

be achieved.

A formal speci�cation is an abstract representation of reality. It has an in�nite number of

potential implementations. However, when we turn from the abstract world of sets, sequences

and formal logic to considering an implementation in a conventional programming language,

we �nd that very few programming languages support the required structures explicitly

(and certainly not in an e�cient manner). We must then determine the most appropriate

data structures to implement the higher level entities (data re�nement) and translate the

operations already de�ned to operate on pointers, arrays, records, etc. If a computer program

is allowed to choose the eventual implementation structures (assuming that it could be relied

upon to choose these appropriately), it will cause a bias towards particular implementations

: : : one of the things that should be avoided if possible to give the implementor the greatest

possible freedom of choice in the design. As such, re�nement will always require a certain

degree of human input, admitting possibilities of human error.

Even when formal methods are used in the design process, testing, at both the unit and

system level, should never be completely abandoned. On the contrary, a comprehensive

testing policy should be employed to trap those errors that have been admitted during

re�nement and/or cases that have not been considered earlier. Although such testing would

not need to be as exhaustive as in the case where formal methods had not been employed,

a substantial degree of testing is still required.

In the case of the formally developed Inmos 
oating-point unit for the T800 Transputer,

one error was found by testing. This was as a result of an \obviously correct" change to the

microcode being made after the formal development had been undertaken. We should never

underestimate human fallibility, and testing will always be a useful check that a formally

produced system does work in the real world.

Testing may be performed in a traditional fashion, using techniques such as McCabe's

Complexity Measure to determine the required amount of testing. Alternatively it may

employ some form of simulation, using executable speci�cation languages, or some form of

speci�cation animation [19, 39].

Formal methods o�er yet another alternative when it comes to testing, namely spec-

i�cation-based testing. The formal speci�cation may be used as a guide for determining

functional tests for the system. The tester may exploit the abstraction made in the speci�-

cation to concentrate on the key aspects of the functionality. The approach o�ers a structured

means of testing, which simpli�es regression testing [23] and helps to pin-point errors.

The speci�cation itself can be used to derive expected results of test data, and to aid in

determining tests in parallel with the design and implementation, hence enabling unit-testing

at an earlier stage in the development (which should aid in reducing system maintenance

costs).

`Look at this mathematician', said the logician. `He observes that the �rst ninety-
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nine numbers are less than a hundred and infers hence, by what he calls induction,

that all numbers are less than a hundred'

`A Physicist believes', said the mathematician, `that 60 is divisible by all numbers.

He observes that 60 is divisible by 1, 2, 3, 4, 5 and 6. He examines a few more

cases, as 10, 20 and 30, taken at random as he says. Since 60 is divisible also

by these, he considers the experimental evidence su�cient.'

`Yes, but look at the engineer', said the physicist. `An engineer suspected that all

odd numbers are prime numbers. At any rate, 1 can be considered as a prime

number, he argued. Then there comes 3, 5 and 7, all indubitably primes. Then

there comes 9; an awkward case, it does not seem to be a prime number, Yet 11

and 13 are certainly primes. \Coming back to 9", he said, \I conclude that 9

must be an experimental error".'

{ George Polya

X
Thou shalt reuse. The programming phase of system development is actually a

minor contributor to system development costs, and is quickly being out-weighed by

system maintenance costs. Rising costs of software development can be signi�cantly o�set by

exploiting software reuse (including code, speci�cations, designs and documentation). This

applies to formal development as well as to more conventional development methods; indeed,

exploiting reuse in formal development can (theoretically at least) aid in o�setting some of

the set-up costs (e.g., tools, training and education) of the development.

Studies quoted by Capers Jones [22] claim that in 1983 only about 15% of all new code

was unique, novel and speci�c to the individual applications. The remaining 85%, it was

claimed, was common and generic, and theoretically could have been rewritten from reusable

components.

There are four major factors which conspire against software reuse, however:

1. The VLSR Problem

The VLSR (Very Large Scale Reuse) Problem [4] holds that the cost of developing an

architectural superstructure to support the composition of components is prohibitive

when compared to the potential savings to be gained from reuse.

2. Generality versus Specialization

Smaller components tend to have a more general applicability; larger units tend to be

more specialized and less likely to be reusable. But, the larger the component, the

greater the payo�, and a seemingly endless dichotomy exists.

3. Cost of Library Population

Determining the components of programs that are suitable for inclusion in a library

tends to be very time-consuming, yet essential if reuse is to be exploited. Having

propagated a library of reusable components, one is still faced with the question of

how suitable components can be identi�ed for future reuse.

12



4. The NIH Syndrome

The Not-Invented-Here Syndrome holds that components reused from previous devel-

opments cannot be relied upon to work as anticipated, to satisfy the organization's

quality control, and to be su�ciently understood so as to be exploited in new systems.

The use of formal methods in system development can help to overcome each of these prob-

lems, and should aid the promotion of software reuse.

Formal methods (or formal speci�cation languages, speci�cally) provide a means of un-

ambiguously stating the requirements of a system, or of a system component. In this way,

formally speci�ed system components that meet the requirements of components of the new

system can easily be identi�ed. Thus components that have been formally speci�ed and

su�ciently well documented can be identi�ed, reused and combined to form components of

the new system. Library population costs are not eliminated, but substantially reduced,

and con�dence in the integrity of the components is greatly increased, as each component is

unambiguously speci�ed, and can have various properties about it proposed and proven.

It is important however not just to focus on the reuse of code that has been developed

using a formal approach, but rather to reuse the formal speci�cations themselves also. Such

reuse of speci�cations should help to overcome the generality versus specialization trade-o�.

Formal speci�cations are written at a high level of abstraction with (ideally) no bias towards

particular implementations. It is during the re�nement process that we translate abstract

speci�cations into more and more concrete representations, ending with a representation that

can be executed in a programming language. Reusing speci�cations rather than source code

admits the possibility of many di�erent implementations in many di�erent environments,

with the most appropriate implementation chosen for the environment in question. In this

way, even large components (which o�er greater pay-o�s) can be made very general and

reusable.

Even code that was previously written (using informal development methods) can be

reused without compromising the formal development itself. Techniques have been inves-

tigated for the reverse engineering of dusty-deck (mainly COBOL) programs to a formal

speci�cation and other associated documentation using an interactive tool-based approach

which can then be redeveloped into a better structured more understandable program [10].

These have been successfully applied to programs of the order of tens of thousands of lines

long. Once this process has been undertaken once, it is possible to maintain the formal

speci�cation as opposed to just the program code, so that the two may be kept in line with

each other.

: : : A method was devised of what was technically designated backing the cards in

certain groups according to certain laws. The object of this extension is to secure

the possibility of bringing any particular card or set of cards into use any number

of times successively in the solution of one problem : : : .

{ Augusta Ada Lovelace
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3 Conclusions

We have attempted to provide some guidelines to help ensure the successful application of

formal methods in an industrial context.

It is important to have up-to-date information to hand when deciding which formal

method to use. There are a plethora of notations and methods from which to choose,

although the number which have been used in an industrial setting is considerably smaller

[2].

Chosing an appropriate notation (or notations) and integrating it (them) with existing

development processes, being careful to ensure that existing guidelines and procedures are

retained as much as possible, is vital for the successful industrialization of formal methods,

and to ensure the success of any given formal methods project.

One must always consider that software engineering is a human activity, and that for-

mal methods are no guarantee of correctness. However, if we are willing to keep our own

limitations in mind, to recognize these, to learn from our own mistakes and the mistakes of

others; and, if we are willing to exploit existing best practice, and to check our work both

through appropriate testing and using automated tools, then we can successfully use formal

methods in the development of industrial-scale high-integrity systems.
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`Can't I just read your URL?'

For readers with access to the World-Wide Web global hypermedia system on

the Internet, the following WWW page may be of interest:

http://www.comlab.ox.ac.uk/archive/formal-methods.html

This provides hyperlinks to many on-line repositories of information relevant to

formal methods, including some freely available tools, around the world.


