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Mathematics of Information Retrieval

Information retrieval methods such as

I traditional vector space methods (keyword searches)

I Google’s PageRank

I HITS (Ask.com)

I SALSA

all proveide

I relevant, modern application of mathematics

I aspects which are accessible early in the curriculum

I other aspects which provide appropriate investigations at
intermediate and advanced levels
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The Olden Days - 1990’s

The internet was still quite new to most people in 1994.

I America Online gave many a “friendly” introduction.

I Internet searching was basically a game of luck.

I
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The year 1996

At Stanford

I Larry Page and Sergey Brin, two CS graduate students

I The result - PageRank and Google

At IBM’s Almaden Research Center

I Jon Kleinberg

I The result - HITS (Hyperlink-Induced Topic Search), Ask.com
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Internet Keyword Searches

I Early internet search engines were based solely on keyword
searches.

I Low reliability of search returns (why?).

I No review process.

I Nothing to guarantee the quality of a site.

I Very susceptible to manipulation (how?).
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A Novel Idea

I Keyword search model viewed the web as a large library, with
webpages acting as books on a shelf.

I Keyword search model ignores an integral aspect of the web.

I The web consists of two sets: its pages and its links.

I Page-Brin-Kleinberg: use the organic and social link structure
of the web in order to rank pages.

I The web is modeled as a directed graph



A Novel Idea

I Keyword search model viewed the web as a large library, with
webpages acting as books on a shelf.

I Keyword search model ignores an integral aspect of the web.

I The web consists of two sets: its pages and its links.

I Page-Brin-Kleinberg: use the organic and social link structure
of the web in order to rank pages.

I The web is modeled as a directed graph



A Novel Idea

I Keyword search model viewed the web as a large library, with
webpages acting as books on a shelf.

I Keyword search model ignores an integral aspect of the web.

I The web consists of two sets: its pages and its links.

I Page-Brin-Kleinberg: use the organic and social link structure
of the web in order to rank pages.

I The web is modeled as a directed graph



A Novel Idea

I Keyword search model viewed the web as a large library, with
webpages acting as books on a shelf.

I Keyword search model ignores an integral aspect of the web.

I The web consists of two sets: its pages and its links.

I Page-Brin-Kleinberg: use the organic and social link structure
of the web in order to rank pages.

I The web is modeled as a directed graph



Directed Graphs

A directed graph is a collection of nodes (the web pages) together
with a collection of arrows pointing from one node to another (the
links).

Example



Application for the Classroom - 1

Graph theory has become a common topic introduced in

I mathematics survey courses for non-science, non-engineering
majors.

I discrete mathematics courses.

Typical focus is on routing and scheduling problems:

I Euler circuits and paths

I traveling salesman problems

I networks and critical paths

The Web provides another very relevent, useful model utilizing
directed graphs.

I diameter of the WWW

I search engine page rankings
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The Mathematics of Google’s PageRank

Each page is assigned a rank, which is a numerical value between 0
and 1. Then, when a keyword search is performed, results are
returned according to their ranks, with higher ranks returned first.



PageRank Example

Each page inherits its rank from those sites linking to it. So, for
example, Page 2 gets:

I 1
3 of Page 1’s rank

I 1
4 of Page 3’s rank

I 1
2 of Page 5’s rank
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PageRank Example

Letting ri denote the rank of page i , i = 1, . . . , 5, we obtain the
following system of linear equations:

0r1 + 0r2 + 1/4r3 + 0r4 + 0r5 = r1

1/3r1 + 0r2 + 1/4r3 + 0r4 + 1/2r5 = r2

0r1 + 1r2 + 0r3 + 1r4 + 1/2r5 = r3

1/3r1 + 0r2 + 1/4r3 + 0r4 + 0r5 = r4

1/3r1 + 0r2 + 1/4r3 + 0r4 + 0r5 = r5
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Application for the Classroom - 2

Solutions to systems of linear equations are often covered in

I college algebra

I finite mathematics

I mathematical modeling (in, for example, the social or
biological sciences)

Google’s PageRank algorithm provides a relevent and modern
example of a problem whose solution is given by such a system.

I too big to solve by hand

I good opportunity to discuss the role of technology
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PageRank Example

We may rewrite the previous system of linear equations in matrix
form. 

0 0 1/4 0 0
1/3 0 1/4 0 1/2
0 1 0 1 1/2

1/3 0 1/4 0 0
1/3 0 1/4 0 0




r1
r2
r3
r4
r5

 =


r1
r2
r3
r4
r5



In this example, the system has a 1-parameter family of solutions.
There is a unique solution whose entries are positive and sum to 1.
This vector is called the pagerank vector, and is given by[

.103 .207 .414 .138 .138
]
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Application for the Classroom - 3

Linear Algebra

I Writing the system as Hx = x , we clearly have an eigenvector
problem.

I At this point, we encounter several “why”’s.

I But at a minimum, the PageRank algorithm gives a new
example of a problem whose solution is provided by an
eigenvector of a matrix.
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The Hyperlink Matrix

The matrix obtained on the previous slide is called the hyperlink
matrix of the web:

H =


0 0 1/4 0 0

1/3 0 1/4 0 1/2
0 1 0 1 1/2

1/3 0 1/4 0 0
1/3 0 1/4 0 0



I completely describes the link structure of the web.

I The pagerank vector is a particular eigenvector associated to
the eigenvalue 1.
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The Dangling Node

The hyperlink matrix for the web on the previous slide is

H =



0 0 1/4 0 0 0
1/3 0 1/4 0 1/3 0
0 1 0 1/2 1/3 0

1/3 0 1/4 0 0 0
1/3 0 1/4 0 0 0
0 0 0 1/2 1/3 0



I lack of outlinks from Site 6 corresponds to the column of 0’s.

I this effects on the nature of solutions to the equation Hx = x .

I matrix is no longer column stochastic, for example.
I Google’s solution:

I view H as a matrix of probabilities
I consider not just the action of following links, but also of

directly typing in a URL.
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The Dangling Node

Google’s PageRank algorithm replaces the previous H with a
“tweaked” matrix

S =



0 0 1/4 0 0 1/6
1/3 0 1/4 0 1/3 1/6
0 1 0 1/2 1/3 1/6

1/3 0 1/4 0 0 1/6
1/3 0 1/4 0 0 1/6
0 0 0 1/2 1/3 1/6


where each 1/6 in the last column represents the probability of
randomly visiting one of the 6 pages by directly typing in its URL.



The Google Matrix

I Let E denote the n × n matrix all of whose entries are 1
n .

I Let 0 ≤ α ≤ 1.

I Then define
G = αS + (1− α)E .

I Google’s last public disclosure was α = .85.

I G is a positive, column stochastic matrix (this is good).
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Some obvious (and important) questions:

I Why does Gx = x have a solution?

I Why does it have a relevant solution?

I Why does it have a unique relevant solution?
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Application cont’d

Theorem (Perron-Frobenius)

Let A > 0 with r = ρ(A). Then the following are true.

I r > 0.

I r ∈ σ(A).

I r has algebraic and geometric multiplicities 1.

I There exists an eigenvector x > 0 such that Ax = rx.
I There exists a unique vector p (the Perron vector) defined by

I Ap = rp
I p > 0
I ||p||1 = 1

I Note: When A is stochastic, r = 1.
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Let A > 0 with r = ρ(A). Then the following are true.

I r > 0.

I r ∈ σ(A).

I r has algebraic and geometric multiplicities 1.

I There exists an eigenvector x > 0 such that Ax = rx.
I There exists a unique vector p (the Perron vector) defined by

I Ap = rp
I p > 0
I ||p||1 = 1

I Note: When A is stochastic, r = 1.



Application for the Classroom - 6

How does Google implement this process with over 11 billion
websites?

I The power method provides an iterative technique for
computing a dominant eigenpair of G .

I Typically converges in less than 20 iterations.

I Nice example for Numerical Analysis.
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Further Reading

1. Understanding Search Engines, by Berry and Browne, 2005

2. Google’s PageRank and Beyond, by Langville and Meyer, 2006
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