The Mathematics of Internet Search Engines

David Marshall

Department of Mathematics
Monmouth University

April 4, 2007
Introduction

Search Engines, Then and Now

Then . . .
Now . . .

Pagerank
Introduction

Search Engines, Then and Now
 Then . . .
 Now . . .

Pagerank
Mathematics of Information Retrieval

Information retrieval methods such as

- traditional vector space methods (keyword searches)
- Google’s PageRank
- HITS (Ask.com)
- SALSA

all proveide
Information retrieval methods such as

- traditional vector space methods (keyword searches)
- Google’s PageRank
- HITS (Ask.com)
- SALSA

all provide relevant, modern application of mathematics
Information retrieval methods such as

- traditional vector space methods (keyword searches)
- Google’s PageRank
- HITS (Ask.com)
- SALSA

all provide

- relevant, modern application of mathematics
- aspects which are accessible early in the curriculum
Information retrieval methods such as

- traditional vector space methods (keyword searches)
- Google’s PageRank
- HITS (Ask.com)
- SALSA

all provide

- relevant, modern application of mathematics
- aspects which are accessible early in the curriculum
- other aspects which provide appropriate investigations at intermediate and advanced levels
Outline

Introduction

Search Engines, Then and Now
 Then . . .
 Now . . .

Pagerank
The Olden Days - 1990’s

The internet was still quite new to most people in 1994.
The internet was still quite new to most people in 1994.

- America Online gave many a “friendly” introduction.
The Olden Days - 1990’s

The internet was still quite new to most people in 1994.

▶ America Online gave many a “friendly” introduction.
▶ Internet searching was basically a game of luck.
The internet was still quite new to most people in 1994.

- America Online gave many a “friendly” introduction.
- Internet searching was basically a game of luck.
The Olden Days - 1990’s

The internet was still quite new to most people in 1994.
- America Online gave many a “friendly” introduction.
- Internet searching was basically a game of luck.

- excite
- Lycos
- altavista
- HotBot
The year 1996

At Stanford

At IBM’s Almaden Research Center
The year 1996

At Stanford

▶ Larry Page and Sergey Brin, two CS graduate students

At IBM’s Almaden Research Center
The year 1996

At Stanford

- Larry Page and Sergey Brin, two CS graduate students

- The result - PageRank and Google

At IBM’s Almaden Research Center
The year 1996

At Stanford

▶ Larry Page and Sergey Brin, two CS graduate students

▶ The result - PageRank and Google

At IBM’s Almaden Research Center

▶ Jon Kleinberg
The year 1996

At Stanford

- Larry Page and Sergey Brin, two CS graduate students

- The result - PageRank and Google

At IBM’s Almaden Research Center

- Jon Kleinberg

- The result - HITS (Hyperlink-Induced Topic Search), Ask.com
Outline

Introduction

Search Engines, Then and Now
 Then . . .
 Now . . .

Pagerank
Internet Keyword Searches

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).
Internet Keyword Searches

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).
- No *review* process.
Internet Keyword Searches

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).
- No review process.
- Nothing to guarantee the quality of a site.
Internet Keyword Searches

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).
- No *review* process.
- Nothing to guarantee the quality of a site.
- Very susceptible to manipulation (how?).
A Novel Idea

- Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.
- Keyword search model ignores an integral aspect of the web.
Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.

Keyword search model ignores an integral aspect of the web.

The web consists of two sets: its pages and its links.
A Novel Idea

- Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.
- Keyword search model ignores an integral aspect of the web.
- The web consists of two sets: its pages and its links.
- Page-Brin-Kleinberg: use the organic and social link structure of the web in order to rank pages.
A Novel Idea

- Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.
- Keyword search model ignores an integral aspect of the web.
- The web consists of two sets: its pages and its links.
- Page-Brin-Kleinberg: use the organic and social link structure of the web in order to rank pages.
- The web is modeled as a directed graph
Directed Graphs

A *directed graph* is a collection of nodes (the web pages) together with a collection of arrows pointing from one node to another (the links).

Example

![Diagram of a directed graph](image)
Graph theory has become a common topic introduced in
- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

The Web provides another very relevent, useful model utilizing directed graphs.
Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:
- Euler circuits and paths

The Web provides another very relevant, useful model utilizing directed graphs.
Graph theory has become a common topic introduced in
- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:
- Euler circuits and paths
- traveling salesman problems

The Web provides another very relevant, useful model utilizing directed graphs.
Application for the Classroom - 1

Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

- Euler circuits and paths
- traveling salesman problems
- networks and critical paths

The Web provides another very relevant, useful model utilizing directed graphs.
Graph theory has become a common topic introduced in
- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:
- Euler circuits and paths
- traveling salesman problems
- networks and critical paths

The Web provides another very relevant, useful model utilizing directed graphs.
- diameter of the WWW
Graph theory has become a common topic introduced in
 ▶ mathematics survey courses for non-science, non-engineering
 majors.
 ▶ discrete mathematics courses.
Typical focus is on routing and scheduling problems:
 ▶ Euler circuits and paths
 ▶ traveling salesman problems
 ▶ networks and critical paths
The Web provides another very relevant, useful model utilizing
directed graphs.
 ▶ diameter of the WWW
 ▶ search engine page rankings
Each page is assigned a *rank*, which is a numerical value between 0 and 1. Then, when a keyword search is performed, results are returned according to their ranks, with higher ranks returned first.
Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:
PageRank Example

Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:

- $\frac{1}{3}$ of Page 1’s rank
PageRank Example

Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:

- $\frac{1}{3}$ of Page 1’s rank
- $\frac{1}{4}$ of Page 3’s rank
Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:

- $\frac{1}{3}$ of Page 1’s rank
- $\frac{1}{4}$ of Page 3’s rank
- $\frac{1}{2}$ of Page 5’s rank
PageRank Example

Letting r_i denote the rank of page i, $i = 1, \ldots, 5$, we obtain the following system of linear equations:
Letting r_i denote the rank of page i, $i = 1, \ldots, 5$, we obtain the following system of linear equations:

\[
\begin{align*}
0r_1 + 0r_2 + 1/4r_3 + 0r_4 + 0r_5 &= r_1 \\
1/3r_1 + 0r_2 + 1/4r_3 + 0r_4 + 1/2r_5 &= r_2 \\
0r_1 + 1r_2 + 0r_3 + 1r_4 + 1/2r_5 &= r_3 \\
1/3r_1 + 0r_2 + 1/4r_3 + 0r_4 + 0r_5 &= r_4 \\
1/3r_1 + 0r_2 + 1/4r_3 + 0r_4 + 0r_5 &= r_5
\end{align*}
\]
Solutions to systems of linear equations are often covered in college algebra, finite mathematics, and mathematical modeling (in, for example, the social or biological sciences).

Google’s PageRank algorithm provides a relevant and modern example of a problem whose solution is given by such a system.
Solutions to systems of linear equations are often covered in
▶ college algebra

Google’s PageRank algorithm provides a relevant and modern example of a problem whose solution is given by such a system.
Solutions to systems of linear equations are often covered in

- college algebra
- finite mathematics

Google’s PageRank algorithm provides a relevant and modern example of a problem whose solution is given by such a system.
Solutions to systems of linear equations are often covered in

- college algebra
- finite mathematics
- mathematical modeling (in, for example, the social or biological sciences)

Google’s PageRank algorithm provides a relevant and modern example of a problem whose solution is given by such a system.
Solutions to systems of linear equations are often covered in
- college algebra
- finite mathematics
- mathematical modeling (in, for example, the social or biological sciences)

Google’s PageRank algorithm provides a relevant and modern example of a problem whose solution is given by such a system.
- too big to solve by hand
Solutions to systems of linear equations are often covered in
 ▶ college algebra
 ▶ finite mathematics
 ▶ mathematical modeling (in, for example, the social or biological sciences)

Google’s PageRank algorithm provides a relevant and modern example of a problem whose solution is given by such a system.
 ▶ too big to solve by hand
 ▶ good opportunity to discuss the role of technology
PageRank Example

We may rewrite the previous system of linear equations in matrix form.

\[
\begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/2 \\
0 & 1 & 0 & 1 & 1/2 \\
1/3 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
r_5
\end{bmatrix}
=
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
r_5
\end{bmatrix}
\]

In this example, the system has a 1-parameter family of solutions. There is a unique solution whose entries are positive and sum to 1. This vector is called the pagerank vector, and is given by

\[
\begin{bmatrix}
0.103 \\
0.207 \\
0.414 \\
0.138 \\
0.138
\end{bmatrix}
\]
PageRank Example

We may rewrite the previous system of linear equations in matrix form.

\[
\begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/2 \\
0 & 1 & 0 & 1 & 1/2 \\
1/3 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
r_5 \\
\end{bmatrix}
=
\begin{bmatrix}
r_1 \\
r_2 \\
r_3 \\
r_4 \\
r_5 \\
\end{bmatrix}
\]

In this example, the system has a 1-parameter family of solutions. There is a unique solution whose entries are positive and sum to 1. This vector is called the pagerank vector, and is given by

\[
\begin{bmatrix}
.103 & .207 & .414 & .138 & .138 \\
\end{bmatrix}
\]
Linear Algebra
Linear Algebra

Writing the system as $Hx = x$, we clearly have an eigenvector problem.
Linear Algebra

▶ Writing the system as $Hx = x$, we clearly have an eigenvector problem.

▶ At this point, we encounter several “why”’s.
Linear Algebra

- Writing the system as \(Hx = x \), we clearly have an eigenvector problem.
- At this point, we encounter several “why”’s.
- But at a minimum, the PageRank algorithm gives a new example of a problem whose solution is provided by an eigenvector of a matrix.
The matrix obtained on the previous slide is called the *hyperlink matrix* of the web:

\[
H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/2 \\
0 & 1 & 0 & 1 & 1/2 \\
1/3 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 \\
\end{bmatrix}
\]
The Hyperlink Matrix

The matrix obtained on the previous slide is called the hyperlink matrix of the web:

\[
H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/2 \\
0 & 1 & 0 & 1 & 1/2 \\
1/3 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0
\end{bmatrix}
\]

▶ completely describes the link structure of the web.
The Hyperlink Matrix

The matrix obtained on the previous slide is called the hyperlink matrix of the web:

\[
H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/2 \\
0 & 1 & 0 & 1 & 1/2 \\
1/3 & 0 & 1/4 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 \\
\end{bmatrix}
\]

- completely describes the link structure of the web.
- The pagerank vector is a particular eigenvector associated to the eigenvalue 1.
Why does the system $Hx = x$ have a solution?
Why does the system $Hx = x$ have a solution?

Example
The Dangling Node

The hyperlink matrix for the web on the previous slide is

\[H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\
0 & 1 & 0 & 1/2 & 1/3 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1/3 & 0 \\
0 & 0 & 0 & 0 & 1/2 & 1/3 & 0 \\
\end{bmatrix} \]
The Dangling Node

The hyperlink matrix for the web on the previous slide is

\[
H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\
0 & 1 & 0 & 1/2 & 1/3 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1/3 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

- lack of outlinks from Site 6 corresponds to the column of 0’s.
The Dangling Node

The hyperlink matrix for the web on the previous slide is

\[
H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\
0 & 1 & 0 & 1/2 & 1/3 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1/3 & 0
\end{bmatrix}
\]

- lack of outlinks from Site 6 corresponds to the column of 0’s.
- this effects on the nature of solutions to the equation \(Hx = x \).
- matrix is no longer column stochastic, for example.
The Dangling Node

The hyperlink matrix for the web on the previous slide is

\[H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\
0 & 1 & 0 & 1/2 & 1/3 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1/3 & 0 \\
\end{bmatrix} \]

- lack of outlinks from Site 6 corresponds to the column of 0’s.
- this effects on the nature of solutions to the equation \(Hx = x \).
- matrix is no longer column stochastic, for example.
- Google’s solution:
The Dangling Node

The hyperlink matrix for the web on the previous slide is

\[
H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\
0 & 1 & 0 & 1/2 & 1/3 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1/3 & 0
\end{bmatrix}
\]

- lack of outlinks from Site 6 corresponds to the column of 0’s.
- this effects on the nature of solutions to the equation \(Hx = x \).
- matrix is no longer column stochastic, for example.
- Google’s solution:
 - view \(H \) as a matrix of probabilities
The Dangling Node

The hyperlink matrix for the web on the previous slide is

\[H = \begin{bmatrix}
0 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 1/3 & 0 & 0 \\
0 & 1 & 0 & 1/2 & 1/3 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
1/3 & 0 & 1/4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1/2 & 1/3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]

- lack of outlinks from Site 6 corresponds to the column of 0’s.
- this effects on the nature of solutions to the equation \(Hx = x \).
- matrix is no longer column stochastic, for example.
- Google’s solution:
 - view \(H \) as a matrix of probabilities
 - consider not just the action of following links, but also of directly typing in a URL.
The Dangling Node

Google’s PageRank algorithm replaces the previous H with a “tweaked” matrix

$$S = \begin{bmatrix}
0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{6} \\
\frac{1}{3} & 0 & \frac{1}{4} & 0 & \frac{1}{3} & \frac{1}{6} \\
0 & 1 & 0 & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\
\frac{1}{3} & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{6} \\
\frac{1}{3} & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{6} \\
0 & 0 & 0 & \frac{1}{2} & \frac{1}{3} & \frac{1}{6}
\end{bmatrix}$$

where each $\frac{1}{6}$ in the last column represents the probability of randomly visiting one of the 6 pages by directly typing in its URL.
The Google Matrix

- Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.
- Let $0 \leq \alpha \leq 1$.
- Then define $G = \alpha S + (1 - \alpha)E$.
- Google's last public disclosure was $\alpha = 0.85$.
- G is a positive, column stochastic matrix (this is good).
The Google Matrix

Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.

Then define $G = \alpha S + (1 - \alpha)E$.

Google's last public disclosure was $\alpha = 0.85$.

G is a positive, column stochastic matrix (this is good).
The Google Matrix

Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.

Let $0 \leq \alpha \leq 1$.
The Google Matrix

- Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.
- Let $0 \leq \alpha \leq 1$.
- Then define

$$G = \alpha S + (1 - \alpha)E.$$
The Google Matrix

Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.
Let $0 \leq \alpha \leq 1$.
Then define

$$G = \alpha S + (1 - \alpha)E.$$

Google’s last public disclosure was $\alpha = .85$.

The Google Matrix

Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.

Let $0 \leq \alpha \leq 1$.

Then define

$$G = \alpha S + (1 - \alpha)E.$$

Google’s last public disclosure was $\alpha = .85$.

G is a positive, column stochastic matrix (this is good).
Some obvious (and important) questions:
Some obvious (and important) questions:

- Why does $Gx = x$ have a solution?
Some obvious (and important) questions:

- Why does $Gx = x$ have a solution?
- Why does it have a relevant solution?
Some obvious (and important) questions:

- Why does $Gx = x$ have a solution?
- Why does it have a relevant solution?
- Why does it have a unique relevant solution?
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

1. $r > 0$.
2. $r \in \sigma(A)$.
3. r has algebraic and geometric multiplicities 1.
4. There exists an eigenvector $x > 0$ such that $Ax = rx$.
5. There exists a unique vector p (the Perron vector) defined by $Ap = rp$, $p > 0$, $||p||_1 = 1$.

Note: When A is stochastic, $r = 1$.
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

- $r > 0$.
- $r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- There exists an eigenvector $x > 0$ such that $Ax = rx$.
- There exists a unique vector p (the Perron vector) defined by $Ap = rp$ and $p > 0$ and $\|p\|_1 = 1$.

Note: When A is stochastic, $r = 1$.
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

▶ $r > 0$.

▶ $r \in \sigma(A)$.
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

- $r > 0$.
- $r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

- $r > 0$.
- $r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- There exists an eigenvector $x > 0$ such that $Ax = rx$.

Note: When A is stochastic, $r = 1$.
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

- $r > 0$.
- $r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- There exists an eigenvector $x > 0$ such that $Ax = rx$.
- There exists a unique vector p (the Perron vector) defined by
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

- $r > 0$.
- $r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- There exists an eigenvector $x > 0$ such that $Ax = rx$.
- There exists a unique vector p (the Perron vector) defined by
 - $Ap = rp$.

Note: When A is stochastic, $r = 1$.
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

- $r > 0$.
- $r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- There exists an eigenvector $x > 0$ such that $Ax = rx$.
- There exists a unique vector p (the Perron vector) defined by
 - $Ap = rp$
 - $p > 0$

Note: When A is stochastic, $r = 1$.
Theorem (Perron-Frobenius)

Let $A > 0$ with $r = \rho(A)$. Then the following are true.

▶ $r > 0$.
▶ $r \in \sigma(A)$.
▶ r has algebraic and geometric multiplicities 1.
▶ There exists an eigenvector $x > 0$ such that $Ax = rx$.
▶ There exists a unique vector p (the Perron vector) defined by
 ▶ $Ap = rp$
 ▶ $p > 0$
 ▶ $\|p\|_1 = 1$

Note: When A is stochastic, $r = 1$.
Theorem (Perron-Frobenius)

Let \(A > 0 \) with \(r = \rho(A) \). Then the following are true.

- \(r > 0 \).
- \(r \in \sigma(A) \).
- \(r \) has algebraic and geometric multiplicities 1.
- There exists an eigenvector \(x > 0 \) such that \(Ax = rx \).
- There exists a unique vector \(p \) (the Perron vector) defined by
 - \(Ap = rp \)
 - \(p > 0 \)
 - \(\|p\|_1 = 1 \)
- Note: When \(A \) is stochastic, \(r = 1 \).
How does Google implement this process with over 11 billion websites?
How does Google implement this process with over 11 billion websites?

► The power method provides an iterative technique for computing a dominant eigenpair of G.
How does Google implement this process with over 11 billion websites?

▶ The power method provides an iterative technique for computing a dominant eigenpair of G.
▶ Typically converges in less than 20 iterations.
▶ Nice example for Numerical Analysis.
Further Reading

1. Understanding Search Engines, by Berry and Browne, 2005

2. Google’s PageRank and Beyond, by Langville and Meyer, 2006