The Mathematics of Internet Search Engines

David Marshall

Department of Mathematics Monmouth University

April 4, 2007

Introduction

Search Engines, Then and Now

Then ...

Now . . .

Pagerank

Outline

Introduction

```
Search Engines, Then and Now Then ...
Now ...
```

Pagerank

Information retrieval methods such as

- traditional vector space methods (keyword searches)
- ► Google's PageRank
- HITS (Ask.com)
- SALSA

all proveide

Information retrieval methods such as

- traditional vector space methods (keyword searches)
- ▶ Google's PageRank
- HITS (Ask.com)
- SALSA

all proveide

relevant, modern application of mathematics

Information retrieval methods such as

- traditional vector space methods (keyword searches)
- ▶ Google's PageRank
- HITS (Ask.com)
- SALSA

all proveide

- relevant, modern application of mathematics
- aspects which are accessible early in the curriculum

Information retrieval methods such as

- traditional vector space methods (keyword searches)
- Google's PageRank
- HITS (Ask.com)
- SALSA

all proveide

- relevant, modern application of mathematics
- aspects which are accessible early in the curriculum
- other aspects which provide appropriate investigations at intermediate and advanced levels

Outline

Introduction

Search Engines, Then and Now

Then ...

Now . . .

Pagerank

The internet was still quite new to most people in 1994.

► America Online gave many a "friendly" introduction.

- ► America Online gave many a "friendly" introduction.
- Internet searching was basically a game of luck.

- ► America Online gave many a "friendly" introduction.
- ▶ Internet searching was basically a game of luck.

- ► America Online gave many a "friendly" introduction.
- ▶ Internet searching was basically a game of luck.

At Stanford

At IBM's Almaden Research Center

At Stanford

▶ Larry Page and Sergey Brin, two CS graduate students

At IBM's Almaden Research Center

At Stanford

► Larry Page and Sergey Brin, two CS graduate students

► The result - PageRank and Google

At IBM's Almaden Research Center

At Stanford

▶ Larry Page and Sergey Brin, two CS graduate students

▶ The result - PageRank and Google

At IBM's Almaden Research Center

Jon Kleinberg

At Stanford

▶ Larry Page and Sergey Brin, two CS graduate students

▶ The result - PageRank and Google

At IBM's Almaden Research Center

Jon Kleinberg

▶ The result - HITS (Hyperlink-Induced Topic Search), Ask.com

Outline

Introduction

Search Engines, Then and Now Then . . .

Now . . .

Pagerank

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).
- ▶ No review process.

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).
- No review process.
- ▶ Nothing to guarantee the quality of a site.

- Early internet search engines were based solely on keyword searches.
- Low reliability of search returns (why?).
- No review process.
- Nothing to guarantee the quality of a site.
- Very susceptible to manipulation (how?).

- Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.
- ▶ Keyword search model ignores an integral aspect of the web.

- ► Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.
- ▶ Keyword search model ignores an integral aspect of the web.
- ▶ The web consists of two sets: its pages *and* its links.

- Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.
- ▶ Keyword search model ignores an integral aspect of the web.
- ▶ The web consists of two sets: its pages *and* its links.
- ▶ Page-Brin-Kleinberg: use the organic and social link structure of the web in order to *rank* pages.

- ► Keyword search model viewed the web as a large library, with webpages acting as books on a shelf.
- ▶ Keyword search model ignores an integral aspect of the web.
- ▶ The web consists of two sets: its pages *and* its links.
- ▶ Page-Brin-Kleinberg: use the organic and social link structure of the web in order to *rank* pages.
- ▶ The web is modeled as a directed graph

Directed Graphs

A *directed graph* is a collection of nodes (the web pages) together with a collection of arrows pointing from one node to another (the links).

Example

Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

Euler circuits and paths

Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

- Euler circuits and paths
- traveling salesman problems

Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

- Euler circuits and paths
- traveling salesman problems
- networks and critical paths

Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

- Euler circuits and paths
- traveling salesman problems
- networks and critical paths

The Web provides another very relevent, useful model utilizing directed graphs.

diameter of the WWW

Graph theory has become a common topic introduced in

- mathematics survey courses for non-science, non-engineering majors.
- discrete mathematics courses.

Typical focus is on routing and scheduling problems:

- Euler circuits and paths
- traveling salesman problems
- networks and critical paths

- diameter of the WWW
- search engine page rankings

The Mathematics of Google's PageRank

Each page is assigned a *rank*, which is a numerical value between 0 and 1. Then, when a keyword search is performed, results are returned according to their ranks, with higher ranks returned first.

PageRank Example

Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:

Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:

▶ $\frac{1}{3}$ of Page 1's rank

Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:

- $ightharpoonup rac{1}{3}$ of Page 1's rank
- $ightharpoonup \frac{1}{4}$ of Page 3's rank

Each page inherits its rank from those sites linking to it. So, for example, Page 2 gets:

- $ightharpoonup \frac{1}{3}$ of Page 1's rank
- $ightharpoonup \frac{1}{4}$ of Page 3's rank
- ▶ $\frac{1}{2}$ of Page 5's rank

Letting r_i denote the rank of page i, i = 1, ..., 5, we obtain the following system of linear equations:

Letting r_i denote the rank of page i, i = 1, ..., 5, we obtain the following system of linear equations:

$$0r_1 + 0r_2 + 1/4r_3 + 0r_4 + 0r_5 = r_1$$

$$1/3r_1 + 0r_2 + 1/4r_3 + 0r_4 + 1/2r_5 = r_2$$

$$0r_1 + 1r_2 + 0r_3 + 1r_4 + 1/2r_5 = r_3$$

$$1/3r_1 + 0r_2 + 1/4r_3 + 0r_4 + 0r_5 = r_4$$

$$1/3r_1 + 0r_2 + 1/4r_3 + 0r_4 + 0r_5 = r_5$$

Solutions to systems of linear equations are often covered in

Solutions to systems of linear equations are often covered in

► college algebra

Solutions to systems of linear equations are often covered in

- college algebra
- finite mathematics

Solutions to systems of linear equations are often covered in

- college algebra
- finite mathematics
- mathematical modeling (in, for example, the social or biological sciences)

Solutions to systems of linear equations are often covered in

- college algebra
- finite mathematics
- mathematical modeling (in, for example, the social or biological sciences)

Google's PageRank algorithm provides a relevent and modern example of a problem whose solution is given by such a system.

too big to solve by hand

Solutions to systems of linear equations are often covered in

- college algebra
- finite mathematics
- mathematical modeling (in, for example, the social or biological sciences)

- ▶ too big to solve by hand
- good opportunity to discuss the role of technology

We may rewrite the previous system of linear equations in matrix form.

$$\begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/2 \\ 0 & 1 & 0 & 1 & 1/2 \\ 1/3 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{bmatrix}$$

We may rewrite the previous system of linear equations in matrix form.

$$\begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/2 \\ 0 & 1 & 0 & 1 & 1/2 \\ 1/3 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{bmatrix}$$

In this example, the system has a 1-parameter family of solutions. There is a unique solution whose entries are positive and sum to 1. This vector is called the $pagerank\ vector$, and is given by

Linear Algebra

Linear Algebra

▶ Writing the system as Hx = x, we clearly have an eigenvector problem.

Linear Algebra

- ▶ Writing the system as Hx = x, we clearly have an eigenvector problem.
- ▶ At this point, we encounter several "why" 's.

Linear Algebra

- ▶ Writing the system as Hx = x, we clearly have an eigenvector problem.
- ▶ At this point, we encounter several "why" 's.
- But at a minimum, the PageRank algorithm gives a new example of a problem whose solution is provided by an eigenvector of a matrix.

The Hyperlink Matrix

The matrix obtained on the previous slide is called the *hyperlink matrix* of the web:

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/2 \\ 0 & 1 & 0 & 1 & 1/2 \\ 1/3 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 \end{bmatrix}$$

The Hyperlink Matrix

The matrix obtained on the previous slide is called the *hyperlink matrix* of the web:

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/2 \\ 0 & 1 & 0 & 1 & 1/2 \\ 1/3 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 \end{bmatrix}$$

completely describes the link structure of the web.

The Hyperlink Matrix

The matrix obtained on the previous slide is called the *hyperlink matrix* of the web:

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/2 \\ 0 & 1 & 0 & 1 & 1/2 \\ 1/3 & 0 & 1/4 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 \end{bmatrix}$$

- completely describes the link structure of the web.
- ► The pagerank vector is a particular eigenvector associated to the eigenvalue 1.

Why does the the system Hx = x have a solution?

Why does the the system Hx = x have a solution? Example

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\ 0 & 1 & 0 & 1/2 & 1/3 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/3 & 0 \end{bmatrix}$$

The hyperlink matrix for the web on the previous slide is

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\ 0 & 1 & 0 & 1/2 & 1/3 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/3 & 0 \end{bmatrix}$$

lack of outlinks from Site 6 corresponds to the column of 0's.

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\ 0 & 1 & 0 & 1/2 & 1/3 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/3 & 0 \end{bmatrix}$$

- lack of outlinks from Site 6 corresponds to the column of 0's.
- ▶ this effects on the nature of solutions to the equation Hx = x.
- matrix is no longer column stochastic, for example.

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\ 0 & 1 & 0 & 1/2 & 1/3 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/3 & 0 \end{bmatrix}$$

- lack of outlinks from Site 6 corresponds to the column of 0's.
- ▶ this effects on the nature of solutions to the equation Hx = x.
- matrix is no longer column stochastic, for example.
- Google's solution:

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\ 0 & 1 & 0 & 1/2 & 1/3 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/3 & 0 \end{bmatrix}$$

- lack of outlinks from Site 6 corresponds to the column of 0's.
- ▶ this effects on the nature of solutions to the equation Hx = x.
- matrix is no longer column stochastic, for example.
- Google's solution:
 - view H as a matrix of probabilities

$$H = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 1/3 & 0 \\ 0 & 1 & 0 & 1/2 & 1/3 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 1/3 & 0 & 1/4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/2 & 1/3 & 0 \end{bmatrix}$$

- lack of outlinks from Site 6 corresponds to the column of 0's.
- ▶ this effects on the nature of solutions to the equation Hx = x.
- matrix is no longer column stochastic, for example.
- Google's solution:
 - view H as a matrix of probabilities
 - consider not just the action of following links, but also of directly typing in a URL.

Google's PageRank algorithm replaces the previous H with a "tweaked" matrix

$$S = \begin{bmatrix} 0 & 0 & 1/4 & 0 & 0 & 1/6 \\ 1/3 & 0 & 1/4 & 0 & 1/3 & 1/6 \\ 0 & 1 & 0 & 1/2 & 1/3 & 1/6 \\ 1/3 & 0 & 1/4 & 0 & 0 & 1/6 \\ 1/3 & 0 & 1/4 & 0 & 0 & 1/6 \\ 0 & 0 & 0 & 1/2 & 1/3 & 1/6 \end{bmatrix}$$

where each 1/6 in the last column represents the probability of randomly visiting one of the 6 pages by directly typing in its URL.

▶ Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.

- ▶ Let *E* denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.
- ▶ Let $0 \le \alpha \le 1$.

- ▶ Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.
- ▶ Let $0 \le \alpha \le 1$.
- ▶ Then define

$$G = \alpha S + (1 - \alpha)E.$$

- ▶ Let *E* denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.
- ▶ Let $0 < \alpha < 1$.
- ▶ Then define

$$G = \alpha S + (1 - \alpha)E.$$

▶ Google's last public disclosure was $\alpha = .85$.

- ▶ Let E denote the $n \times n$ matrix all of whose entries are $\frac{1}{n}$.
- ▶ Let $0 \le \alpha \le 1$.
- ▶ Then define

$$G = \alpha S + (1 - \alpha)E.$$

- Google's last public disclosure was $\alpha = .85$.
- ► *G* is a positive, column stochastic matrix (this is good).

Some obvious (and important) questions:

Some obvious (and important) questions:

▶ Why does Gx = x have a solution?

Some obvious (and important) questions:

- ▶ Why does Gx = x have a solution?
- Why does it have a relevant solution?

Some obvious (and important) questions:

- ▶ Why does Gx = x have a solution?
- Why does it have a relevant solution?
- Why does it have a unique relevant solution?

Theorem (Perron-Frobenius)

Theorem (Perron-Frobenius)

Let A > 0 with $r = \rho(A)$. Then the following are true.

▶ r > 0.

Theorem (Perron-Frobenius)

- ▶ r > 0.
- $ightharpoonup r \in \sigma(A)$.

Theorem (Perron-Frobenius)

- ▶ r > 0.
- $ightharpoonup r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.

Theorem (Perron-Frobenius)

- ightharpoonup r > 0.
- $ightharpoonup r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- ▶ There exists an eigenvector x > 0 such that Ax = rx.

Theorem (Perron-Frobenius)

- ▶ r > 0.
- $ightharpoonup r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- ▶ There exists an eigenvector x > 0 such that Ax = rx.
- ▶ There exists a unique vector p (the Perron vector) defined by

Theorem (Perron-Frobenius)

- ▶ r > 0.
- $ightharpoonup r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- ▶ There exists an eigenvector x > 0 such that Ax = rx.
- There exists a unique vector p (the Perron vector) defined by
 - ightharpoonup Ap = rp

Theorem (Perron-Frobenius)

- ▶ r > 0.
- $ightharpoonup r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- ▶ There exists an eigenvector x > 0 such that Ax = rx.
- There exists a unique vector p (the Perron vector) defined by
 - ightharpoonup Ap = rp
 - ▶ *p* > 0

Theorem (Perron-Frobenius)

- ▶ r > 0.
- $ightharpoonup r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- ▶ There exists an eigenvector x > 0 such that Ax = rx.
- There exists a unique vector p (the Perron vector) defined by
 - ightharpoonup Ap = rp
 - p > 0
 - $||p||_1 = 1$

Theorem (Perron-Frobenius)

- ▶ r > 0.
- $ightharpoonup r \in \sigma(A)$.
- r has algebraic and geometric multiplicities 1.
- ▶ There exists an eigenvector x > 0 such that Ax = rx.
- There exists a unique vector p (the Perron vector) defined by
 - ightharpoonup Ap = rp
 - p > 0
 - $||p||_1 = 1$
- Note: When A is stochastic, r = 1.

How does Google implement this process with over 11 billion websites?

How does Google implement this process with over 11 billion websites?

▶ The power method provides an iterative technique for computing a dominant eigenpair of *G*.

How does Google implement this process with over 11 billion websites?

- ▶ The power method provides an iterative technique for computing a dominant eigenpair of *G*.
- ▶ Typically converges in less than 20 iterations.
- Nice example for Numerical Analysis.

Further Reading

1. Understanding Search Engines, by Berry and Browne, 2005

2. Google's PageRank and Beyond, by Langville and Meyer, 2006

