
Workshop position paper accepted at ICSE’03 - International Conference on Software Engineering, May 3-11, 2003.
Workshop on Bridging the Gaps Between Software Engineering and Human-Computer Interaction

Software Engineering Overlaps with Human-Computer Interaction: A Natural

Evolution

Allen E. Milewski
Monmouth University

amilewski@monmouth.edu

Abstract

It is argued that overlap between the Software
Engineering and Human-Computer Interaction
disciplines is part of a natural evolution that has been
developing throughout the history of both fields. It is
further proposed that education and training is the most
effective and long-lasting solution to some of the
problems of communication and efficiency that have
developed. Finally, it is argued that the education
curricula are already evolving to reduce these problems.

1. Introduction

The disciplines of Software Engineering and Human
Computer Interaction have each evolved over the past ten
years to meet the needs of their customers and the
responsibilities of their work assignments. In the course
of evolving, each has seen the need to evolve toward the
other. Software Engineering has developed practices for
understanding the needs of users and other stakeholders
in order to obtain reliable requirements and has developed
evolutionary process models to iterate with users during
the design phase. Human-Computer Interaction
Engineers, for their part, have begun to include analyses
of technical platform capabilities and constraints early in
their designs, and now regularly develop software
prototypes for user evaluation [1, 4].

This evolved situation has many problems. The most
significant one is that the two disciplines don’t know
enough about each other to realize that the have evolved
similarly. There is often a striking lack of communication
between these two disciplines despite the fact that they
often work side by side on a daily basis on software
projects. They use different terminology for similar
activities and artifacts. In most cases, there is a loss of
efficiency since two engineers are performing highly-
overlapping functions, at twice the cost, when in some

situations, one person could do it. And, worst of all, there
is the increased chance of confusing customers and users
alike when two organizations schedule interviews and
two organizations handover overlapping requirements
documents for validation and sign-off.

But, in spite of these problems, it is argued, the current
situation is much improved over the historic relationship,
and is a natural evolution of the two fields that can be,
and already is, being facilitated by fairly simple changes
in the training process.

It is important to remember that the introduction of users
into the computing environment is not a recent
development. Historically, the relationship between
software “builders” and Human-Computer Interaction
Professionals was almost always entirely antagonistic.
There are many stories where HCI professionals needed
to plead with a developer to try to get even a small
usability change incorporated. The response was often,
“the software can’t do that”, or “the impact of that change
is just too large”. Conversely, there are also many stories
where HCI engineers attempted power-plays to force
developers to make seemingly arbitrary changes that were
needlessly difficult and complex.

These organizational atrocities are relatively rare in the
current, evolved situation. It is more difficult now to tell
an HCI engineer what the software can or cannot do
because s/he is more knowledgeable in platform
characteristics. And, it is more difficult to tell a
Requirements Engineer that they don’t know what the
user needs because they, too, have likely utilized an
assortment of techniques for finding out.

This would suggest that the overlap between fields,
contrary to being a problem, has actually been a good
thing and a natural evolution for disciplines with the
mutual goal of producing effective systems. The
increased breadth of knowledge in these disciplines has

Workshop position paper accepted at ICSE’03 - International Conference on Software Engineering, May 3-11, 2003.
Workshop on Bridging the Gaps Between Software Engineering and Human-Computer Interaction

increased empathy and made the negotiation processes far
more realistic and efficient.

2. Some Prescribed Measures may have
Small Effects

But, problems of communication and efficiency certainly
persist, so that it is useful to consider how they can be
reduced further. Some measures have been proposed, but
it is argued that they are unlikely to have major effects on
current SE/HCI problems, at least when taken in isolation.

1) It will not solve the problem to combine
Software Engineers and Human Computer
Interaction into a single discipline or a single
role in the lifecycle of a project. First, while
user interface issues generally account for half
(or even more) of the lines of code, there are still
many application functions that have nothing
directly to do with the user. Second, experience
has shown the utility of having a “user
advocate”, semi-separated from the schedule and
budget demands of the rest of the project.
Finally, there is simply too much to do to
combine positions and the interfaces to others in
the project (systems engineers, developers,
designers, marketers) are typically too numerous
for one person to handle.

2) It is unlikely that creating a common, integrated

process model will, by itself make the current
situation more manageable. In practice, process
models are chosen and adapted to fit the
specifics of the environment and, often, the
needs of the specific project. As such, process
models are more descriptive of what happens
than prescriptive of what must happen. The
history of process models is one of trial and
error, where processes that are developed in an
ad hoc fashion in real-life projects are retained
and formalized if they turn out to be effective. –
same with tools --may be the only resort for
people already in industry

3) It is similarly unlikely that anything will be

solved by initiating a formal effort to create a
common terminology for the two disciplines.
Like process models, the development of a set of
useful working terms has a strong grass-roots
element. Of course, many of our professions’
terms have been introduced by leading thinkers

in the fields, but only those that are meaningful
in practice remain and become popular. Besides,
what set of terms would be chosen to describe
overlapping concepts? Existing terms are all
laden with baggage for one discipline or the
other. And, the strategy of creating brand new,
neutral terms inevitably complicates the situation
Since the older terms are seldom dropped, the
net effect is to magnify confusion by increasing
the number of synonymous terms (or worse- not
quite synonymous).

3. Evolution Through Education and
Training

The most significant and lasting solution lies in the
education and training programs for both Software
Engineering and HCI. If the Academic disciplines begin
to acknowledge the overlap and specifically explore it,
students will enter the workforce in a better position to
collaborate with the entire interdisciplinary team required
for a successful software project. From this
interdisciplinary education will come the abilities and
attitudes required to continue the evolution of the two
fields.

Several aspects of training are especially important in this
context:

•

•

•

First, students in each discipline need to be exposed
to and encouraged to explore the terminology of the
other and decide for themselves the mapping between
them and the most useful commonalities. In general, it
is more useful to be aware of terminology differences
than to be shoehorned into a single one.

Second, students need to be steeped in the problem-
solving approaches of the other discipline. The pace of
software projects in Industry is very fast, and most of
the communication required has to be implicit.
Successful collaboration requires knowing how other
team-members think and approach their tasks. Courses
on topics such as the Psychology of Programming and
Empirical Behavioral Methods are useful in this
respect.

Third, the issues of overlap between Software
Engineering and Human-Computer Interaction need to
be covered in detail from a Management standpoint. I
recently cited for a friend the potential problem of
separate SE and HCI requirements being delivered to
the customer for validation. He, a longtime manager,
asked: “what manager in his right mind would ever let
that happen?”. His reminder that inefficiencies come

Workshop position paper accepted at ICSE’03 - International Conference on Software Engineering, May 3-11, 2003.
Workshop on Bridging the Gaps Between Software Engineering and Human-Computer Interaction

from management shortcomings was a sound one.
Management Training courses need to deal with these
issues.

The theme here has been that the Software Engineering
and Human-Computer Interaction fields have both been
evolving in a positive way and that overlap is part of that
continual evolution. Similarly, the educational curricula
for these fields are evolving to solve current issues of
communication and efficiency. There is an increasing
number of programs that acknowledge the overlap and
giving their students the opportunity to explore it in
detail. Interdisciplinary faculty are becoming more
common. Major Software Engineering textbooks have
increased the sophistication of their HCI coverage [3].
Finally, nearly every survey textbook on Usability
Engineering covers Process at least in part from a
traditional Software Engineering standpoint [2, 4].

Many educators in both Software Engineering and
Human Computer Interaction have examples of students
discovering the similarities between the fields, and the
differences as well. It is gratifying that the differences
they see are not the artificial differences of the historic
relationship, but the differences the really exist, and
ought to exist for software projects to be efficient and
successful.

10. References

[1] Mayhew, D., The Usability Engineering Lifecycle,
Morgan Kaufmann, San Francisco, 1999.

[2] Preece, J., Rogers, Y. and Sharp, H.., Interaction
Design, Wiley, New York, 2002.

[3] Pressman, R.S.., Software Engineering: A
practitioner’s approach., Fifth Edition, McGraw Hill,
New York, 2001.

[4] Rosson, M.B.. and Carroll, J.M., Usability
Engineering: Scenario-Based Development of Human-
Computer Interaction., Academic Press, London, 2002.

