Instructor

Jiacun Wang
email: jwang@monmouth.edu
Office: HH B-12
Office Phone: (732)571-4449
Office Hours: Friday 10:00-12:00. Other time by appointment

Course Objectives

This course will introduce fundamental mathematical concepts of software engineering, such as sets, relations, infinities, propositional logic, predicate logic, formal languages, and graphs. It will help students to develop the ability to think abstractly and work with symbolic representations as if they were concrete objects.

Textbook

Susanna S. Epp,
Discrete Mathematics with Applications,
Purchase of this book is required.

Course Work

• There will be 5 homework assignments, a midterm exam and a final exam.
• All homework must be turned in by the due day.
• Both of the two exams are open-book.

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>50%</td>
</tr>
<tr>
<td>Midterm</td>
<td>25%</td>
</tr>
<tr>
<td>Final exam</td>
<td>25%</td>
</tr>
</tbody>
</table>

Class Participation

Class participation is strongly recommended. If you miss a class, it is your responsibility to find out what is covered and what announcements are made in the class.

Withdrawal

Last date to withdraw with automatic assignment of a "W" grade: Tuesday, November 4, 2008.
Academic Honesty

Everything you turn in for grading must be your own work. Academic dishonesty subverts the University's mission and undermines the student's intellectual growth. Therefore, we will not tolerate violations of the code of academic honesty. Penalties for such violations include suspension or dismissal and are elaborated upon in the Student Handbook.

Special Accommodations:

Students with disabilities who need special accommodations for this class are encouraged to meet with the instructor or the appropriate disability service provider on campus as soon as possible. In order to receive accommodations, students must be registered with the appropriate disability service provider as set forth in the student handbook and must follow the University procedure for self-disclosure, which is stated in the University Guide to Services and Accommodations for Students with Disabilities. Students will not be afforded special accommodations for academic work done prior to completion of the documentation process with the appropriate disability service office.

Tentative Course Content

WK1 (09/05) Introduction to Math Foundations of Software Engineering
WK2 (09/12) Propositional Logic, Natural Deduction Rules
WK3 (09/19) Contradiction, Proof by Contradiction
WK4 (09/26) Semantics of Propositional Logic, Normal Forms
WK5 (10/03) Predicate Logic
WK6 (10/10) Proof Theory and Semantics of Predicate Logic
WK7 (10/17) Review and Midterm
WK8 (10/24) Set Theory
WK9 (10/31) Functions
WK10 (11/07) Simple Graph, Directed Graph, Multi-graph, Graph Isomorphism
WK11 (11/14) Paths, Connectivity, Euler Paths and Hamilton Paths
WK12 (11/21) Trees
WK13 (11/25) Petri Nets Basics
WK14 (12/05) Petri Nets Modeling
WK15 (12/12) Final Exam