Moving Beyond the Integers:  The Rational, Real, and Complex Numbers
So far this semester we have been studying whole numbers:  first natural numbers, then the integers.  We turn now to the other number systems which are involved in school-level mathematics:  rational numbers, real numbers, and complex numbers.
I. Comparing properties of the natural numbers, integers, rational numbers, real numbers, complex numbers.

As we move from the natural numbers to the integers, then the rational numbers, etc., we are at each stage enlarging our definition of number, and thus enlarging the set of numbers we are considering.  That is, each set of numbers mentioned is a proper subset of the next set, and keeps its properties as new properties are added.  One effect of this extension to larger number systems is that we are able to solve new kinds of equations which weren’t solvable in the smaller system.  However, the new properties also make some of the rules students must learn more complicated.  For example, with natural numbers, if  a < b and you add to or multiply both sides of the inequality by the same natural number c, the inequality is preserved:  a + c < b + c; and ac < bc.  However, as soon as negative numbers are introduced, the second property is no longer always true:  if c < 0,  and  a < b,  then ac > bc.  Similarly, it’s not easy to explain why the product of two negative numbers is positive.  And, while multiplying fractions is fairly intuitive, adding fractions is a nightmare:  
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The chart on the next page gives a comparison of the five number systems we’re considering this semester.

	N (natural numbers)
	Z (integers)
	Q (rational numbers)
	R (real numbers)
	C (complex numbers)

	There is a first element (1), but no last element
	Neither first nor last element
	Neither first nor last element
	Neither first nor last element
	Neither first nor last element

	There is an ordering, <, which is transitive and consistent with addition and multiplication
	There is an ordering, <, which is transitive and consistent with addition and multiplication
	There is an ordering, <, which is transitive and consistent with addition and multiplication
	There is an ordering, <, which is transitive and consistent with addition and multiplication
	There is no natural ordering

	Each element has an immediate successor
	Each element has an immediate successor
	Between any two elements there are infinitely many other elements
	Between any two elements there are infinitely many other elements
	Because there’s no ordering, this issue is irrelevant

	Addition and multiplication are associative and commutative, and multiplication distributes over addition
	Addition and multiplication are associative and commutative, and multiplication distributes over addition
	Addition and multiplication are associative and commutative, and multiplication distributes over addition
	Addition and multiplication are associative and commutative, and multiplication distributes over addition
	Addition and multiplication are associative and commutative, and multiplication distributes over addition

	There is a multiplicative identity (1) but no additive identity
	There are additive (0) and multiplicative (1) identities
	There are additive (0/1) and multiplicative (1/1) identities
	There are additive (0) and multiplicative (1) identities
	There are additive (0+0i) and multiplicative (1+0i) identities

	There are no inverses
	Each number has an additive inverse, but only 1, -1 have multiplicative inverses
	Each number has an additive inverse, and every number except 0 has a multiplicative inverse
	Each number has an additive inverse, and every number except 0 has a multiplicative inverse
	Each number has an additive inverse, and every number except 0 has a multiplicative inverse

	Equations a + x = b and ax = b occasionally have solutions
	Equations a + x = b always  have solutions and ax = b occasionally have solutions
	Equations a + x = b and ax = b always have solutions (except the latter if a = 0), but few polynomials have roots
	Equations a + x = b and ax = b always have solutions (except the latter if a = 0), and some polynomials have roots
	All polynomials of degree 1 or higher have roots.


II. Constructing the integers from the natural numbers, the rational numbers from the integers, and the complex numbers from the real numbers.

L. Kronecker, a well-known German mathematician of the 19th century, has been often quoted for his assertion that “God made integers; all else is the work of man.”  Not all mathematicians agree with either part of this assertion, but the natural numbers do seem to be, in some way, part of our physical world (at least in the sense that even animals appear to have a recognition of small numbers).  When assorted paradoxes started to crop up in mathematics around the end of the 19th century, mathematicians felt it was necessary to establish mathematics on the strongest, firmest foundation available, the natural numbers.  In this section we shall see how to build the integers from the natural numbers, and the rational numbers from the integers.  Later in the handout we’ll sketch how to build the real numbers from the rational numbers and the complex numbers from the real numbers.  Thus, we get all our other numbers from the natural numbers.  This was initially done (roughly the same method, but without modern terminology) by a German mathematician, Edmund Landau, in his book, Foundations of Analysis, in 1929.  His work, in part, was denounced by the Nazis as “Jewish” mathematics (Landau was Jewish) as opposed to pure “Aryan” mathematics, which they saw as more visionary and less concerned with small details.

We’re actually going to do things backwards – we’ll first construct the rationals from the integers, because this is very close to how we work with rationals naturally; then we’ll show how a very similar process constructs the integers from the natural numbers.  In both cases, we’ll construct the larger set as “equivalence classes of ordered pairs” of the smaller set.  That is, we’ll make rational numbers from pairs of integers, and then say which pairs are considered the same, or equivalent.

A. Constructing the rational numbers

In fact, that’s exactly what we do in elementary school, when fractions are introduced.  A fraction is simply introduced as a quotient of integers:  
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.  But what on earth does this mean, putting one integer on top of another, with a line in between?  Yes, we can make sense of this, and try to, so that children can understand it:  
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  means take a unit (a whole, 1), divide it into n equal parts, and then choose m of them.  But the expression as written doesn’t make any more inherent sense than if we had written it as (m,n).  On the other hand, this latter notation makes sense in a lot of contexts.  We could consider it a point in the lattice plane (that is, the plane, where we’re only considering points with integer coordinates) which are off the y-axis (that is, with n non-zero); or we can consider it as choosing one number (m) and then another number (n), where the order matters.  (That is, 
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, written (m,n), is different from (n,m), that is, 
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.)  Thus, for the remainder of this discussion of building the rational numbers, we’re going to write (m,n) but think 
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1. When are two rational numbers equivalent?

Two rational numbers are equal when they reduce to the same fraction, in lowest terms; that is, 
[image: image8.wmf]mu

nv

=

 when there is another fraction 
[image: image9.wmf]c

d

 which is in lowest terms (that is, gcd(c,d) = 1) such that 
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.  There are lots of other ways to say this.  One is that there are other integers i and j such that  m = ci, n = di, u = cj, and v = dj:  that is,  
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.  Another is that mv = nu since mv =cidj = dcji = nu.  This last, “cross-multiplying” is our usual definition of two fractions being equivalent, and is what we’ll use for our definition of two rational numbers being equivalent.  That is, we define an equivalence relation on pairs of integers by (m,n) ~ (u,v) if mv = nu.  We need to prove it is an equivalence relation, because then it acts as our definition of equals.
1. Reflexive:  is (m,n) ~ (m,n)?  To check, we must take the first m times the second n and see if it equals the first n times the second m:  does mn = mn?  Clearly, yes.

2. Symmetric is left as a homework problem.

3. Transitive:  if (m,n) ~ (u,v) and (u,v) ~ (x,y),  does (m,n) ~ (x,y)?  We’ll fill this in together in class:
So, just as with numbers modulo n, we treat two rational numbers which are equivalent as equal.  (The terminology we use is, “they’re in the same equivalence class.”)  This is important as we start to add and multiply them and want to prove various properties:  we don’t have to show they’re the same pairs, just that they’re equivalent.
2. Adding rational numbers.  As mentioned above you know how to add two rational numbers:  
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.  In our terminology, this becomes 

(a,b) + (c,d) = (ad + bc,bd).  
We must first check that this is consistent with our equivalence relation; that is, if  (a,b) ~ (a’,b’)  and (c,d) ~ (c’,d’), then 

(a,b) + (c,d) ~ (a’,b’) + (c’,d’).  But the first hypothesis says  ab’ = a’b and the second says  cd’ = c’d.  We need to prove that (ad + bc,bd) ~ (a’d’ + b’c’,b’d’).  But this translates into (ad + bc)b’d’ = (a’d’ + b’c’)bd, which, when multiplied out, becomes
ab’dd’ + bb’cd’ = a’bdd’ + bb’c’d.  By the fact that ab’ = a’b, the first terms on each side are equal, and by the fact that cd’ = c’d,  the second terms on each side are equal, and so this equality is true.
We must check that this obeys the properties we have listed for rational numbers:
a. Addition is associative:  Is (a,b) + ((c,d) +(e,f)) = ((a,b) + (c,d)) +(e,f)?  Well, using the addition definition above,  
(a,b) + ((c,d) + (e,f)) = (a,b) + (cf + de,df) = (adf + b(cf + de),bdf) = (adf + bcf + bde,bdf)
((a,b) + (c,d)) +(e,f) = (ad + bc,bd) + (e,f) = ((ad + bc)f + bde,bdf) = (adf + bcf + bde,bdf),

so they’re equal.

b. Addition is commutative:  that is for homework.

c. There is an additive identity.  We said in the table that 
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 is the additive identity for the rationals, that is, (0,1).  Let’s check this:  (a,b) + (0,1) = 
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= (a,b).

d. There are additive inverses for each element.  We’ll fill this in in class:  the additive inverse for (a,b) is               .  To check it, 

3. Multiplying rational numbers.  We know that 
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(a,b)(c,d) = (ac,bd).  As with addition, we must show:

a.  This definition is consistent with our equivalence relation.  If (a,b) ~ (a’,b’)  and (c,d) ~ (c’,d’), we must show that  (a,b)(c,d) ~ (a’,b’)(c’,d’).  But the hypotheses translate to
ab’ = a’b and  cd’ = c’d,  and the conclusion translates to  acb’d’ = a’c’bd,  which is the same thing as  ab’cd’ = a’bc’d,  which is just the product of the hypotheses.

b. Multiplication is commutative:  (a,b)(c,d) = (ac,bd) = (ca,db) = (c,d)(a,b).
c. Multiplication is associative:  homework.

d. There is a multiplicative identity, (1,1):  (a,b)(1,1) = 
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e. Every element except (0,1) (the additive identity) has a multiplicative inverse:  the multiplicative inverse of (a,b) is

Proof:  (a,b)

f. Multiplication is distributive over addition:  (a,b)[(c,d) + (e,f)] = (a,b)(cf+de,df) = (acf + ade,bdf) ~ (multiplying numerator and denominator by b) (acbf + abde,bbdf) = (ac,bd) + (ae,bf) = (a,b)(c,d) + (a,b)(e,f)
4. Ordering rational numbers.  
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, which, assuming b and d are positive (we can always find an equivalent fraction where this is true, by putting the negative integer in the numerator), means bc – ad > 0; that is, ad < bc.  This, finally, becomes our definition:  assuming b and d are positive (recall they can’t be 0) we define (a,b) < (c,d)  to be true when  ad < bc.  There are two kinds of properties we need to know about rational numbers:  those about the order itself, and those relating our order to addition and multiplication.
What properties should an order have?  It should be transitive; it should satisfy “trichotomy”:  for any two elements A and B, exactly one of A < B, A = B, B < A should hold.  (This makes it irreflexive and antisymmetric.)

a. Transitive:  If (a,b) < (c,d)  and  (c,d) < (e,f),  is  (a,b) < (e,f)?  The first hypothesis tells us that  ad < bc.  The second tells us that  cf < de.  We need that  af < be.  Often in proofs, when there’s no obvious connection between the hypotheses and the conclusion, one thing one can try is something which uses some intermediary between them.  We start with ad and want to end with af, so let’s look at adf.  Using the first hypothesis, we get that  adf < bcf.  Using the second hypothesis on the second and third factors on the right, we get that bcf < bde.  Thus, adf < bde.  Since we assumed that our denominators (and thus, d) are positive, we can divide both sides by d without changing the direction of the inequality, which gives us our conclusion.
b. Trichotomy:  Given any two rational numbers, (a,b) < (c,d), we must show that exactly one of the following holds:  (a,b) < (c,d), (a,b) = (c,d), (c,d) < (a,b).  These three options translate directly, by the definition of <, into ad < bc, ad = bc, and ad > bc.  Since exactly one of these three is true of integers, exactly one of (a,b) < (c,d), (a,b) = (c,d), (c,d) < (a,b) is true of rational numbers.

The properties order should have in relation to addition and multiplication are:
c. addition preserves order:  if  (a,b) < (c,d),  then  (a,b) + (e,f) < (c,d) + (e,f).
Proof:  Given  (a,b) < (c,d),  this translates to ad < bc.  We want (a,b) + (e,f) < (c,d) + (e,f), which translates to  (af+be,bf) < (cf+de,df), which translates to  

(af+be)df < bf(cf+de), which, when multiplied out, becomes  adff + bdef < bcff + bdef.  The two right hand terms are the same, and the two left terms are just ad < bc, multiplied by f 2, which is always positive and thus preserves order.
d. multiplication by positive numbers preserves order:  if  (a,b) < (c,d),  and ef > 0, then  (a,b)(e,f) < (c,d)(e,f).  We are given that ad < bc, and want to prove that  (ae,bf) < (ce,df), that is, that  adef < bcef.  But this is exactly what we get if we multiply ad < bc by ef, which we’re given is positive, and we know, for integers, that if we multiply both sides of an inequality by a positive integer, the inequality’s direction is unchanged.
B. Constructing the integers from the natural numbers.

We have now shown that we can build up the rational numbers from the integers, as ordered pairs of integers.  We can do the same thing to build up the integers from the natural numbers.  The idea here is that a pair if natural numbers (m,n), will be thought of as m – n.  However, because we can’t subtract an arbitrary natural number from another, we must define everything in terms of addition.  This gives rise to the following definitions of the equivalence relation, addition, multiplication, and order:

(a,b) ~ (c,d) if  a + d = b + c.  (Think:  (a,b) ~ (c,d)  if  a – b = c – d  which can be rearranged as a + d = b + c .)

(a,b) + (c,d) = (a + c,b + d).  (Think: (a – b) + (c – d) = (a + c) - (b + d).)

(a,b)(c,d) = (ac + bd,bc + ad). (Think: (a – b)(c – d) = ac – bc – ad + bd = (ac + bd) – (bc + ad).)

(a,b) < (c,d)  if  if  a + d < b + c.  (Think:  (a – b) < (c – d)  if  a + d < b + c.)

One can show, as we did above for the rational numbers, that addition and multiplication behave with respect to the equivalence relation, are commutative and associative, multiplication distributes over addition, and that addition and multiplication by positive numbers preserves order.  They are basically the same kinds of proofs, although the details are different because the definitions are different.  The items which are worth more mention are identities and inverses.  The additive identity is (1,1) (or equivalently, (a,a)) (since 1 – 1 = 0):  (a,b) + (1,1) = (a + 1,b + 1), which is equivalent to (a,b) since 

(a + 1)  + b = a + (b + 1).
The additive inverse of (a,b) is (b,a) (a homework problem).  The multiplicative identity is (2,1).  (We’ll do this in class.)  There are, of course, in general, no multiplicative inverses.
C. Constructing the complex numbers from the real numbers.

We’ll construct the real numbers in the next part.  For the moment, assume we have the real numbers.  We can construct the complex numbers from them even more simply than the previous two constructions, because we don’t have to put in an equivalence relation.  We can, in fact, think of the complex numbers as the real number plane, where 1 on the vertical axis represents i (one square root of -1).  So each complex number a + bi is simply an ordered pair (a,b) of real numbers.  We have to define addition and multiplication on them.  Addition is just what you’d expect:

(a,b) + (c,d) = (a+c,b+d).

But multiplication is more complex (pun intended!).  Recall that, using distributivity,

(a + bi)(c + di) = ac + bci + adi + bdi2 = (recalling that i2 = -1, and so collecting real and imaginary terms) (ac - bd) + (bc + ad)i.  So we now use that as our definition of multiplication, recalling that something multiplied by i goes in the second coordinate:
(a,b)(c,d) = (ac - bd,bc + ad).

In this notation, what is our additive identity?          The additive inverse of (a,b)?

Our multiplicative identity?                 Let’s (in class) find the multiplicative inverse of (a,b), assuming (a,b) isn’t the additive identity.

It turns out (it’s not an easy theorem) that there is no way to order the complex numbers which is consistent with addition and multiplication, so we won’t worry about order.
III.  Constructing the real numbers from the rationals.

How do we know that, once we’ve added the rational numbers, there are any more numbers?  There don’t appear to be any gaps in the number line.  But there are equations which should have solutions but which don’t.  For example, there should be a number whose square is exactly two.  How do we know there is no rational whose square is 2?

Theorem:  there is no rational number p/q whose square is 2.

Proof:  By contradiction:  assume there is such a number.  Let 
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 be a rational number in “lowest terms” (i.e., such that gcd(p,q) = 1) such that 
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Then p2 = 2q2, which tells us that p2 is even.  But if the square of a number is even, so is the number (since the square of odd numbers is odd).  Hence p is even; that is, there is an n such that p = 2n.  Replacing p by 2n in p2 = 2q2, we get  (2n)2 = 2q2, which multiplies out to  4n2 = 2q2.  Dividing both sides by 2, we get that 2n2 = q2.  But this means that q2 is even, which, by our reasoning just above, tells us that q is even.  This is a contradiction to the assumption that gcd(p,q) = 1, since 2 is now a divisor of both.  So some lengths aren’t rational numbers, and there are, in fact, gaps in the number line.
The algebraic numbers.  Just as we expanded from the natural numbers to the integers in order to be able to solve the equation n + x = m  for every m and n, and from the integers to the rational numbers in order to be able to solve the equation  nx = m for every m and n, we can try to expand our numbers again by trying to solve the equation  xn = m for every m and n.  The solution, of course, is the nth root of m.  One difficulty which arises is that, for negative m and even n, the solution involves i, the square root of -1.  However, we can indeed form this set, but what we instead do is form a somewhat larger set, the set of all solutions to equations of the form  anxn + an-1xn-1 + … + a1x + a0 = 0, where all the coefficients ai are rational numbers.  This collection is called the algebraic numbers, and the subset of these which don’t involve i are called the real algebraic numbers.  This set includes 
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, etc., but doesn’t include the famous , nor the almost as famous e, neither of which satisfy such equations.  Proofs that e and  are not algebraic (real numbers which are not algebraic are called transcendental) involve mathematics considerably more sophisticated than we can discuss in this course.  But because there are such transcendental numbers, even if we added the algebraic numbers, there would still be gaps in the number line.  There are courses (in “abstract algebra”) which do go into considerable detail about the algebraic numbers, but we are going to move past them to the largest set we can construct in a line, the real numbers.
Filling in the holes in the number line.  We can’t construct the real numbers from the rational numbers in the same way that we have done these other constructions.  One reason is that there are more real numbers, in an important sense (see part IV) than rational numbers.  There are a number of ways of constructing the real numbers.  One is as the limit of sequences of rational numbers, another is as the limit (sum) of series of rational numbers. (That is what infinitely long decimals are, for example.  For instance, 1.23123123123… is 1 + 2*(0.1) + 3*(0.1)2 + 1*(0.1)3…; and a.b1b2b3… =  a + b1*(0.1) + b2*(0.1)2 + b3*(0.1)3… = a + 
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.)  The easiest one to define the operations for (which can be shown to be the equivalent of any of these) though not necessarily the easiest to understand are what is called “Dedekind cuts” of rational numbers.  A set of A of rational numbers is called a Dedekind cut if both of the following are true of it:

· it contains at least one rational number, but not all rational numbers
· it has no greatest element (i.e., for each rational in it, there’s a larger rational in it)

· if a rational number is in it, so is every smaller rational number.

Note:  one very important property of rational numbers which I neglected to put in part II but should have is that, given any two rational numbers, a/b and c/d, there is another rational number between them (for example, their average, 
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 Example 1:  The set of all rational numbers less than 3 is a Dedekind cut.  It contains at least one rational number, for example, 2.  It doesn’t contain all rational numbers (in particular, it doesn’t contain 3).  It has no greatest element:  if an element a/b is in it, then a/b is less than 3, so the average of a/b and 3 is still less than 3 (so in this cut) but larger than a/b.  And if a rational number is less than 3, so is every smaller rational number.

Example 2:  The set of all rational numbers whose square is less than 3, together with the negative rational numbers, is a Dedekind cut.  That is, {a/b | a/b < 0 or (a/b)2 < 3} is a Dedekind cut.  It contains at least one rational number (for example, 17/10) and doesn’t contain all rational numbers (for example, 3 isn’t in it).  If a rational number is in it, either that rational is negative, in which case every smaller number is in it; or it is positive, with a square less than three, in which case all negative numbers are smaller than it, and all positive numbers less than it have their squares less than 3 also and so are in it.  
That it has no largest element takes some work.  We need to show that, if any rational number a/b is in the set, there is a larger rational number in the set also.  Given that a/b is in the set, either it is negative or 0, in which case we immediately have a larger number, 17/10, which is in it.  Or it is positive.  Under that latter assumption, then, to be in the set, (a/b)2 < 3.  Since there is always a rational number between two rationals, let (a/b)2 < c/d < 3.  We want to find a number m so that a/b + 1/m is still in the set; that is, so that 
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 is still less than 3.  The idea is to choose an integer m large enough so that


[image: image30.wmf]2

2

22

121

()

aaac

bmbmd

bm

+=++<

.  Let n be large enough that 1/n < 
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, we’ll be done.  So let m be greater than both 4an/b and 
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, which is exactly what we need.
Example 3. On the other hand, the following are not Dedekind cuts:  the set of all integers (1 is there, but numbers less than 1, such as 1/2, aren’t), the set of all rational numbers larger than 3, the set of all rational numbers, the empty set.
Now, it turns out that there are two kinds of Dedekind cuts.  One kind, while it doesn’t have a largest element, has a smallest rational number which is larger than it (called a least upper bound).  For example, Example 1 above is such a cut, with 3 as its least upper bound.  Example 2 is the other kind of cut:  there is no smallest rational number which is larger than all the elements of that cut, because it there were, it would be the square root of 3.  Basically, the cuts which do have a rational least upper bound are identified with rational numbers, and those which don’t have a rational upper bound are called “irrational” numbers.  We thus define a rational number r to be the cut {q  Q: q < r}.  The rational numbers together with these new irrational numbers (that is, the set of all Dedekind cuts) form the real numbers.  
Ordering cuts.  We can define a cut a to be positive if 0  a.  Then, once we have the additive inverse of a cut (see below), a cut is negative if  – a is positive.  We can also define when one cut is less than another:  a < b if there is a rational number r which is in b which is not in a.  One of the most important properties which the real numbers have and the rationals don’t is that every bounded non-empty set of real numbers has a least upper bound and a greatest lower bound.
Theorem:  Let S be a non-empty set of real numbers which has an upper bound.  Then S has a least upper bound.

Note:  That S has an upper bound means that there is a real number b such that for all a in S, a < b.  That S has a least upper bound means that there is a real number c which is an upper bound for S, and such that it is smaller than any other upper bound.

Proof:  Assume S has an upper bound, b.  Form the set c = {q  Q: there is an a in S such that q  a}.  I claim that (1) c is a Dedekind cut; (2) c is an upper bound for S; and (3) c is the least upper bound for S.

(1) Since b is larger than anything in S, anything not in b cannot be in c, so c doesn’t contain all rational numbers.  Since S is non-empty, there is some cut in it, whose members are then in c; so c is non-empty.  If S has a largest element, a, then c is simply a, in which case we’re done, as all real numbers are Dedekind cuts.  If S doesn’t have a largest element, then c can’t either, since given any element of c, it is in some element a of S, and there’s a larger element of S which will then (by our definition of <) have a larger rational number in it.
(2) We must show that c is at least as large as anything in S.  If a is in S, either a < c, in which case we’re done; or a > c.  In this last case, there is an q in a which is not in c.  But this contradicts the definition of c.  Thus, there is no such q, and a can’t be larger than c.

(3) If b is another upper bound of S, we must show that c < b.  Were b < c, by the definition of <, there would be a q in c which is not in b.  Since q is in c, there would be an a in S with q  a.  But then, since q is in a but not in b, a > b, which contradicts that b is an upper bound for S.

Using this theorem, we can prove as a corollary (homework) that any set which is bounded below has a greatest lower bound.

The import of this theorem is that we have filled in any gaps in the number line.  If there is a “gap”, there is a real number assigned to that gap.  This is the essential property behind theorems one learns in calculus, such as the Intermediate Value Theorem:  If f is a continuous function on the interval [a,b], and L is a number between f(a) and f(b), then there is a real number c between a and b such that  f(c) = L.  To prove this theorem, assume (“without loss of generality”) that f(a) <  f(b) (the case f(a) > f(b) works the same, but with all inequalities involving f reversed).  Form the set S = {d in [a,b] : f(d) < L}.  S is non-empty, since a is in it, and it is bounded above by b (since f(b) > L).  Hence it has a least upper bound, c.  By properties of continuity, f(c) = L.  This property also allows you to “zoom in” on a piece of the real line and be sure something is there.  That is, if a function is positive on one end of an interval and negative on the other end, you can cut the interval in half and look at the midpoint.  Whichever half-interval now has the sign change can again be cut in half, etc., and finally you get the place where the function is zero at the intersection.
Decimals and Dedekind cuts.  Each (infinitely long) decimal is associated with a unique Dedekind cut; that is, we can consider each decimal to be a Dedekind cut and each Dedekind cut to be a decimal.  To convert a decimal to a cut, consider the decimal 

a0.a1a2a3… = a0 + a1*10-1 + a2*10-2 + a3*10-3 + ….   This is associated with the cut which has this as least upper bound.  That is, the following rational numbers are in the cut:  all which are less than or equal to a0 ; also all which are larger than a0 but less than or equal to a0 + a1*10-1 ; also all which are larger than a0 + a1*10-1 but less than or equal to a0 + a1*10-1 + a2*10-2 + a3*10-3; etc.  (Note:  any terminating decimal, such as .345, can be rewritten as a non-terminating (i.e. infinitely long) decimal:  .345 = .3499999….)

To convert a Dedekind cut to a decimal, we’ll first assume that the cut has some non-negative integer in it.  Let a0 be the largest integer which is in the cut.  Then, let a1 be the largest digit such that a0 + a1*10-1 (which is a rational number, (10 a0 + a1)/10) is in the cut.  Since a0 is in the cut, at the least if a1 = 0, a0 + a1*10-1 is in the cut, so there is such a digit; we choose the largest one.  Similarly, let a2 be the largest digit such that 

a0 + a1*10-1 + a2*10-2 is in the cut, and so on.  So every finite part of a0.a1a2a3… is in the cut, and yet the whole number is larger than anything in the cut, since if it weren’t, some part would have a rational number larger than it, and so some digit could be enlarged.  Thus, a0.a1a2a3… is the least upper bound of this cut.  If the cut only has negative integers in it, its decimal expansion will be a negative number, and is obtained similarly but somewhat more awkwardly.
The arithmetic of Dedekind cuts.  To add two Dedekind cuts a and b, we can simply add their elements; that is, a + b = {q + r : q  a and r  b}.  All the additive properties of the rational numbers then carry over to these Dedekind cuts.  For example,

(a + b) + c = {q + r : q  a and r  b} + c = {(q + r ) + s: q  a, r  b, and s  c} = 

{q + (r  + s): q  a, r  b, and s  c} (by associativity for rational numbers) =

a + {r  + s: r  b and s  c} = a + (b + c).  The additive identity is 0, which is defined to be {r  Q: r < 0}.  The additive inverse is a little tricky, though.  If a > 0 (that is, if 0  a), the additive inverse of a cut a is –a = {r  Q : r < 0 and –r 
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-a = {r  Q : r < 0 or –r 
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 a}.  (For example, if a is the cut representing 3.5, which is all rational numbers less than 3.5, -a is all rational numbers less than -3.5, since these (for example, -4) are all negative, and their opposites (in our example, 4) are all larger than 3.5.  On the other hand, if b is the cut representing -2.3, which is all rational numbers less than -2.3, -b must consist of all numbers which are less than 2.3.)

This complication comes in when we try to define multiplication of Dedekind cuts as well.  We can’t simply define ab as the product of elements of a and elements of b.  To see this, consider the cuts defined by 2 and 3 (that is, 2 = {r  Q : r < 2} and 3 = {r  Q : r < 3}).  -5  2, since -5 < 2; and -4  3, since -4 < 3.  But the product of 2 times 3 should be 6.  However, (-5)(-4) = 20, which is certainly not less than 6.  So we have to be careful about the negative numbers in cuts.  This forces our definition to be in several parts, depending on whether each of a and b are positive, negative, or zero.
If a and b are both positive, we define ab = {r  Q : r < 0}
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 {pq : p  a, q  b, and both p and q are > 0}.  If either a or b is zero, ab = 0.  If a > 0 and b < 0, ab = a(-b) ; if a < 0 and b > 0, ab = (-a)b ; and a < 0 and b < 0, ab = (-a)(-b).

The disadvantage of this definition in parts is that to check any property of multiplication, you have to check all the possible cases.  This is sufficiently messy and tedious that we won’t do it, but you might like to check one or two cases for yourself.  In any case, all the properties listed in the table at the beginning of this handout can be proven.  The multiplicative identity is 1, and the multiplicative inverse of a is given by

1/a = {r  Q : r < 0 or 1/r 
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 a} if a is positive, -(1/(-a)) if a is negative.
IV.  Sizes of infinity.  

You might think that all infinite sets are the same size.  In fact, mathematicians were of that belief until around 1900, when Georg Cantor, a German mathematician, demonstrated that there were many different infinite sizes, and the sets we’ve been talking about are of two different sizes.  

How can we compare the sizes of sets?  Well, let’s look back to how we find the size of finite sets.  We “count”.  What does that mean?  We go from one object to another, saying successive natural numbers as we do so.  That is, we make a one-to-one correspondence between objects and successive natural numbers.  This skill takes learning:  at first small children will count an object twice, skip several objects, skip numbers, say the numbers not in order, etc.  But this process of putting objects in one-to-one correspondence is at the essence of how we count, and how we can show that some infinite sets are the same size, even when one is a subset of another, and yet others are not the same size.  We will prove here that there are the same number of natural numbers as integers; in class we’ll look at the proofs that there are also the same number of rational numbers, but that there are more real numbers than rational numbers.

To show that there are the same number of integers as natural numbers, we’ll put them in one-to-one correspondence.  Below we have, first the natural numbers, and then the integers they’re paired with:

N :   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   …     2n     2n + 1 ….

Z :   0   1  -1   2  -2  3  -3   4  -4    5   -5     6    -6     7    -7   …       n        - n  ……

No number is counted twice; no number is skipped.  Thus, by our standard meaning of having the same size, these two infinite sets have the same size.  One can similarly (but more intricately) match each natural number with a rational number.  However, one can also prove that, if one had a proposed matching of natural numbers with real numbers, there would be a real number which was left out (and one can even construct what number it would be).  Hence, the natural numbers cannot be put in one-to-one correspondence with the real numbers; the latter set is a larger infinity.
V.  Exponential functions and logarithms.

Because logarithms appear to be a topic many high school teachers are confused about, we end this section on building our number systems by looking at two related types of functions over the real numbers, exponential functions and logarithmic functions.  If n is a natural number, then we know what an means:  it means a multiplied by itself n times.  Better, we can define it inductively.  a0 = 1, a1 = a, an+1 = ana for n > 1.  We define a1/q (also written 
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) to be the qth root of a; that is, the solution to the equation  xq = a, since by rules of exponents, 
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.  There is a solution in the real numbers to this equation (via the Intermediate Value Theorem) as long as a is positive or q is odd.  (Even roots of negative numbers get us to the complex numbers.)  Putting these two definitions together, ap/q = a(1/q)p = 
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.  Thus, as long as a is positive, we can define any rational power of a.  We can extend this to any real power using cuts:  ab is the smallest cut (real number) which contains ap/q for all rational numbers p/q which are less than b.  

This defines the exponential function, ax, as long as a is a positive real number.  It is always positive, even when x is negative (since a root of a positive number is still positive), and, if a is larger than 1, it is increasing, while if a is between 0 and 1, ax is always decreasing.  Of course, all the usual rules of exponents apply:  a0 = 1, a1 = a, 

abac = ab+c;  a-1 = 1/a; 
[image: image43.wmf]()

bcbc

aa

=

.
Exponential functions have many important applications, from population growth to savings accounts to radioactive decay to the rate something cools or heats.  In many of these problems, one wants to find out at what value of x the exponential function gets to a given height y.  This is the reverse problem from finding the value of the exponential function at a given x, for which all you have to do is plug in x, and it is the question logarithmic functions were invented to solve.  You have seen inverses a fair amount this year; -5 is the additive inverse of 5; 1/3 is the multiplicative inverse of 3.  You have also seen some inverse functions in your previous experience.  
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 is the inverse function for x3, for example, because if you start with any number, find its cube, then take the cube root, you get back to the number:  23 = 8, and 
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 = 2.  And it works both ways; take the cube root of 2, which is simply 
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, and then cube it, and you get back to 2 again.

Here, the definition of the logarithm, base a, is that it is the inverse of the function ax.  That is, for any numbers a and x, loga(ax) = x and, if x is positive, 
[image: image47.wmf]x
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.  You can use this to solve equations involving exponential functions.  If you want to find an x such that 2x = 15, take logarithms of both sides (the same base for the logarithm on both sides, of course).  The easiest is the logarithm with the same base as the exponential function involved:  log2(2x) = log2(15).  The left side then simply becomes x, yielding the final answer  x = log2(15).  However, if you want a numerical value for x, this isn’t the best method, as few calculators have a log2(x) button.  Most only have log and ln buttons (log being log10 and ln being loge.  So in that case, take one of these logarithms of both sides:

log(2x) = log(15).  Because each rule of exponents gives rise to a corresponding rule of logarithms (see below), the left side becomes xlog(2), resulting in the equation xlog(2) = log(15).  Dividing both sides by log(2), we get x = log(15)/log(2).

I said that each rule of exponents has a corresponding rule of logarithms.  Let’s look at this a bit.  Taking loga of both sides of a0 = 1 gives us loga(a0)= loga(1), which, using our basic definition of logarithms above, turns into 0 = loga(1).  Similarly (homework exercise), a1 = a, turns into 1 = loga(a).  If you start with 
[image: image48.wmf]()

bcbc

aa

=

 corresponds to loga(bc) = cloga(b).  To show this latter rule, take a to both sides of the equation.  The left side becomes 
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, which simplifies to bc using the definition of logarithm.  The right side becomes 
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.  Again, using the definition of logarithms, the right side of this become bc.  Since both sides of loga(bc) = cloga(b) become equal when a is raised to them, they must have been equal to start with.  With similar methods, we can show that abac = ab+c corresponds to loga(b) + loga(c) = loga(bc)  and that  a-1 = 1/a  corresponds to -1 = loga(1/a).
Homework:
From Part II:

1. Perform the following operations on the following rational numbers:

(a) (3,10) + (-5,8);  (b) (3,10)(-5,8);  (c) (3,10)
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2. Which of the following rational numbers are equivalent?  (3,5), (9,4), (12,20), (15,20), (45,20),(12,16), (12,14), (16,11), (20,28)
3. Perform the following operations on the following integers:

(a) (3,10) + (8,5);  (b) (3,10)(8,5);  (c) (3,10) - (8,5)

4. Which of the following integers are equivalent?  (3,5), (9,4), (12,20), (15,20), (45,20),(12,16), (12,14), (16,11), (20,28)

5. Perform the following operations on the following complex numbers:

(a) (3,10) + (-5,8);  (b) (3,10)(-5,8);  (c) (3,10)
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6. Prove that for any two rational numbers, there is a rational number between them.

7. Prove that the definition of equivalence on rational numbers is in fact symmetric.

8. Prove that addition of two rational numbers is commutative.

9. Prove that multiplication of two rational numbers is associative.

10. a. Show that any rational number of the form (0,b) (with 
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) is an additive identity.

b. Show that, for any set with addition, if there is an additive identity (call it i), then this identity is unique, that is, if there is another element j which acts like an additive identity, then in fact, i = j.

c. Why don’t parts a and b contradict each other?  (Hint:  use the equivalence relation:  show that any two numbers (0,b) and (0,b’) are equivalent and thus the same rational number.)
11. Show that we can solve linear equations over the rational numbers:  that is, given any rational numbers (a,b), (c,d), and (e,f) with 
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,  there is a rational number (x,y) such that  (a,b)(x,y) + (c,d) = (e,f).
12. Show that, for rational numbers, if  (a,b) < (a’,b’)  and  (c,d) < (c’,d’),  then  (a,b)(c,d) < (a’,b’)(c’,d’).  (Hint:  use the fact that addition preserves order.)

13. Show that, for rational numbers,  (a,b) is positive if and only if ab > 0.

14. Show that, for the integers as ordered pairs of natural numbers, that the additive inverse of (a,b) is (b,a).

15. Explore the powers of i.  That is, what is i2, i3, i4, i5, i6, etc.?  Do you see a pattern?  Prove it.
From Part III.
1. Show by induction that the sequence  
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, … is increasing.  What real number is the sequence converging to?

2. Given that 0.1234567891011… is transcendental, what can you say about 17.181920212223…?

3. In the lab, we showed that, if  is the golden ratio, then 2 = 1 + .  Use this to find 3,  4,  5,  and a general formula for n
4. Prove that, if a and b are cuts, exactly one of the following must be true:  a < b, a = b, or a > b.

5. Prove that if a is rational and b is irrational, then a + b and ab are irrational.  (Hint:  prove this by contradiction; assume each is rational and show that, in that case, b is rational.)

6. Prove that a < b, if and only if b – a (which is defined to be b + (- a)) is positive.

7. Prove that, given any two cuts a and b with a < b, there is a rational cut r between them.  (Hint:  use the rational number r which is in b but not in a.)

8. Prove that any non-empty set of real numbers which is bounded below has a greatest lower bound.  (Hint:  take the set S, and form its complement:  T = {-a : a  S}.  Prove T is bounded above (and hence, by the theorem, has a least upper bound, c.  Prove that –c is a greatest lower bound for S.)

9. Given any real number a and any integer n, show that there is a rational number of the form m/n which is within 1/n of a.  (Hint:  divide the real number line into slices of length 1/n.  Where does a fall?)

From Part IV.

1. Prove that there are the same number of rational numbers as positive rational numbers.

From Part V.

1. Show that, applying logarithms, a1 = a turns into 1 = loga(a).

2. Using rules of logarithms, solve (a) 35x = 7;  (b)  35x = 74x-5
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