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Everything in this lab can be found by opening the “M” drive (Mathserv/users), opening the folder Gold, then opening Public, then opening the folder MA 598, then opening the Fall03 folder; or on the internet.

Part I:  Exploring graphs with programs from the University of Arizona’s site.

These programs, like the ones from the last lab, are rather primitive, but there are some nice things you can do with them.  From the Gold/Public/MA598/FA03/Graphs folder, double-click on Runme, choose 2 (color monitor), and it brings up the main options window for the graphing program.  In this program you can input your own graphs, work with (including modify) certain well-known graphs which it has built in (such as the Kn graphs (complete graphs on n vertices), the Km,n graphs (complete bipartite graphs with m vertices in one set and n vertices in the other), wheels, etc.), or work with graphs it generates randomly.  It will test graphs for a variety of properties, such as being connected, planar, having bridges (edges whose removal disconnects the graph), Euler circuits and paths, Hamiltonian paths.  It will also, for graphs which have  Euler circuits or paths, construct such paths step by step using the Fleury algorithm.  The program will also show you all the vertices with odd degrees in the graph and show you the complement of the graph.  We’ll explore a variety of these options.  We’ll begin by Dr. Gold demonstrating a variety of these activities with the graph K3,2.  

A. Now it’s your turn.  Choose Disk Ops, and under it, Load graph.  Choose 3A.GRP, which is the graph from problem 3(a) of section 1.4 of our text, which you did for homework.  It will ask you if you want Overwrite existing graph; choose YES.
1. Testing this graph.

a. Does this graph have a Hamiltonian path?  If so, write it here: ___________________

Now, choose T (Tests), Hamiltonian path.  What does the computer say (and if it does have such a path, what path does it give)?  ___________________________

b. How many odd vertices does the graph have? ___  Which are they? ___________ 
c. Does this graph have an Eulerian circuit? ___  Why or why not?__________________

If it does, give one.  _____________________________________________________

Then, choose F (Fleury algorithm), then Eulerian circuit.  What Eulerian circuit does the algorithm construct? ______________________________

d. If it doesn’t have an Eulerian circuit, does it have an Eulerian path? ___  

Why or why not? ________________________________________

If it has an Eulerian path, choose F (Fleury algorithm), then Eulerian path.  What Eulerian path does the algorithm construct? __________________________________________

e. If the graph has neither an Eulerian circuit nor an Eulerian path, use R (remove edge) and remove some edges until it does have an Eulerian path.  Remove the smallest number of edges which will give you an Eulerian path.  Which edges did you remove? ___________

Now, write an Eulerian path for this graph. _____________________________________

Next, choose F (Fleury algorithm), then Eulerian path.  What Eulerian path does the algorithm construct? __________________________________________

2. Modifying the graph.  You found, when you did your homework assignment for 1.4, that this graph is planar.  But as presented, it has a lot of crossings.  Using the Move vertex (M) option, move the vertices until you get a graph with no crossings:  this must be possible if the graph is planar.  Draw your resulting graph below:

B. Exploring a non-planar graph.  Under Disk Ops/Load graph/3H.GRP.  When it asks whether you should Overwrite Existing Graph, choose Yes.  This is the graph from problem 3(h) of section 1.4.

1. a. Does this graph have a Hamiltonian path?  If so, write it here: __________________

Now, choose T (Tests), Hamiltonian path.  What does the computer say (and if it does have such a path, what path does it give)?  ___________________________

b. How many odd vertices does the graph have? ___  Which are they? ___________ 

This graph has an Eulerian circuit. Why?_______________________________________

Give one.  _____________________________________________________

Now, choose F (Fleury algorithm), then Eulerian circuit.  What Eulerian circuit does the algorithm construct? ______________________________

c. Have the program check whether this graph is planar:  what does it say? _____

2. In fact, the graph isn’t planar.  Working with some scratch paper, find a K3,3 configuration in this graph.  Now, by modifying the graph (deleting some edges, moving the vertices around (but don’t delete them:  if a vertex is an additional vertex on one of the edges of the K3,3 graph, put it on the edge between the top set and the bottom set), turn the graph into this K3,3 configuration.

What edges did you delete? _____________________________________

Draw your K3,3 configuration below.

C. Exploring a random graph.  Escape from your current graph, and from the main menu, under Built-In Graphs, choose Random.  When it asks whether you should Overwrite Existing Graph, choose Yes.  Draw, below, the graph the computer gives you.

1. Now, test it:  first, is it connected?  You say ___  Computer says _____

2. What are the degrees of each of the vertices? ________________________________

3. If it’s not connected, many of the later tests won’t work, so add some edges to make it connected.  What edges did you add? ____________________________

4. Test for bridges:  what bridges does it have? ____________________

5. Is the graph planar?  You say ___  Computer says _____

6. Does the graph have a Hamiltonian path?  If so, what is one? __________________

7. Does the graph have a Eulerian circuit? _____  Path? _______ Give whichever one it has, if either: ______________________________________________

Escape from the plot of the graph, and go, under the main menu, to Tests.  This has a few more tests which aren’t on the list on the plotted graph.

8. Is the graph bipartite?  You say ___  Computer says _____

9. Is the graph a tree?  ____

Part II:  Exploring combinatorics online.  Go to The (Combinatorial) Object Server,

http://www.theory.csc.uvic.ca/~cos/root.html.  Below is some information from its home page:
What is it?

The idea is that you specify a type of combinatorial object, together with specific parameter values, and COS will return to you a list of all such objects. COS can

generate permutations, combinations, various types of trees, unlabelled graphs, linear extensions of posets, pentomino puzzle solutions, numerical partitions, and a

host of other combinatorial objects. In some instances you may specify the order in which the objects are generated (such as lexicographic or a Gray code order).

Almost always the output may be presented in a variety of formats which you may specify. These different formats include well-known correspondences and

representations of the objects. For example, permutations may be ouput in one-line notation, in cycle notation, or as a pair of Standard Young Tableau under the

Schensted correspondence. 

Who is it intended for?

We hope that a great variety of people will use COS. It is meant to be used by researchers and educators who wish to easily produce list of combinatorial objects.  The elementary objects such as permutations, combinations, and subsets are well-known and studied in the elementary and secondary schools. In fact, there's another version, called The Amazing Mathematical Object Factory, and directed to K12 students and educators, that runs on Canada's "Schoolnet" -- please give it a try if you're looking for something simpler and less comprehensive than COS.  (The Amazing Mathematical Object Factory is at http://www.schoolnet.ca/vp/AMOF/.  However, when Dr. Gold tried it November 9, it wasn’t working:  when the button “Generate” was pushed, instead of generating the answer, it downloaded a computer program.  I then contacted the author using the online link, who said he knew it was not working, but he couldn’t get Schoolnet to fix it.  He said it was OK to use his own version of the page, http://theory.cs.uvic.ca/~cos/amof/.  This page has a lot less than the COS page, but is more appropriate for use with a class (and contains some examples more at the school level).)  On COS, there are some recreational items, such as pentomino puzzle solutions which can be understood by anyone. And then there's more complicated objects such as graphical partitions, linear extensions of posets, primitive polynomials, and unlabelled graphs which will be of interest to university students and scientific/mathematical researchers.

A. Skim through the home page of the Combinatorial Object Server.  Notice, toward the bottom of that page, it has three kinds of symbols for an object, either a green check (√) mark (“Works great”), a yellow highway sign showing a worker (“Partially functional”) or a red x (“Don’t waste your time”) – this shows you what they hope to do eventually.  We’ll spend a little time exploring three kinds of objects that we’ve studied in class, permutations, combinations, and subsets, and one we haven’t (although it is discussed somewhere in our text, and possibly mentioned in some of the problems in sections we’ve discussed), numerical partitions.

At the top of the page, right-click on the iObject button, and choose “Open in New Window.”  iObject represents information about the objects this set of pages computes. On the page you get, under Permutations, click on the Permutations link.  Read this page carefully.  You might even like to print it out.  This page contains, in very abbreviated form, a lot of information on permutations.  Keep this window open, and use it for each step in this part of the lab where you are supposed to read something before trying an activity.
Now, go to the other window, and click on the [image: image1.png]


 button.  This brings you to a page of links to pages which will calculate various combinatorial objects for you in a range of formats.  We’ll explore a few of these in this part of the lab:  Permutations and their restrictions; Subsets or Combinations; and Numerical Partitions and relatives.
B. Click on the Permutations and their restrictions link, both in the iObject page and in the [image: image2.png]


 page.  Notice that the circle for “All permutations of [n] = {1,2,..., n}” is marked (it’s the default), and below that, in Input, n has been set equal to 4.  Below that, under Output, “One line notation” is checked; click in the box for “Cycle notation” so it’s also checked (you can have several boxes checked under Output), and then click on Generate!  
You should get two lists, one with a heading of One-line and the other with a heading of Cycle.  A cycle is simply a replacement of each object by the next listed in the cycle; finally, the last object is replaced by the first.  So, a cycle (1,3,2) replaces 1 by 3, 3 by 2, and 2 by 1; that is, since the natural order of 1,2,3,4 is 1,2,3,4, when we do the cycle (1,3,2), we’ll get 3,1,2,4.  (Notice that if you scroll down the list, where, under One-line, they have 3,1,2,4, under Cycle they have (1,3,2).  All permutations can be written as a combination of cycles; for example, if you take the permutation of 1,2,3,4 which is 4,3,2,1 (the first on the list), notice that 1 and 4 have been interchanged.
1. Describe what you see under the heading One-line: _________________________
____________________________________________________________________

2. To check that you understand the idea of cycle, what cycle would give the reordering 1,5,4,2,3 of 1,2,3,4,5?  
What 0-1 matrix does it correspond to?  Write the matrix, and draw the non-taking rook chessboard corresponding to it below.

Now, check your answers by choosing, on the Permutation Object page, n = 5,  clicking, in Output, all of “One line notation,” “Cycle notation,” and “Permutation matrix (chess board).”
In your lab write-up, explain (in enough detail for a high school student to understand it):

a. how a matrix is associated with a permutation.  Is every such matrix (0-1 matrix which contains exactly one 1 in each row and column) associated with some permutation?

b. how this is equivalent to a collection of n non-taking rooks on a chessboard.
3. Next, use the “back” button to get you back to the Generate Permutation page, and choose the second option under “What Type?”, “All k-permutations of {1,2,…,n}.”  In the Input box, you need both an n and a k, because you’re finding P(n,k) here.  Pick an n up to 10 and some k, choose whatever kind of output you’d like, and see what it gets.  (It won’t list more than 1000 objects, which is easy to get beyond with n > 10.)  Below, say what n and k you chose, and describe what your output was like.
4. Finally, go to the iObject page and click on Stamp Foldings, read through the top part of the description, and then try one out for a small n (3 or 4) on the Generate Permutations page, under What Type.  Describe below what you got.

C. Go to the iObject page on “Subsets.”  

1. Notice that, in the discussion of Grey Codes, there’s a recursion relation T(n+1) = T(n),n+1,T(n), with T(1) = 1.  This is directly related to the Tower of Hanoi (which it mentions directly below):  how? ____________
____________________________________________________________________

2. Go to the “Subsets or Combinations” [image: image3.png]


 page.  Set n to 4, and first have it list the subsets in lex order; under Output, choose List of Elements; copy the result here:
_____________________________________________________________________

______________________________________________________________________

3. Then choose Subsets in Grey Code order, and in Output, choose all three of Bitstring representation, List of Elements, and Tower of Hanoi.

a. List the elements you get from the List of Elements here:  _____________________

_____________________________________________________________________

______________________________________________________________________

How does it differ from when you had it do it in lex order? _____________________

_____________________________________________________________________

What does the Bitstring list tell you?

______________________________________________________________________

The Tower of Hanoi pictures?

______________________________________________________________________

D. Click on iObject “Combinations.”  Notice the recurrence relation of the binomial coefficients:  C(n,k) = C(n-1,k) + C(n-1,k-1) just under Pascal’s triangle.  Now go to the other window, which should still have the Generate Subsets or Combinations page up, under What Type?, choose Combinations in Lex order, set n = 5, k = 3, Output List of elements, click on Generate.  What list do you get?  ___________________________

_____________________________________________________________________

Does this agree with your expectations for the number of ways to choose a set of 3 elements from a set of 5 elements (which are called 1, 2, 3, 4, and 5)?

____________________________________________________________________

E. Go to the iObject page on “Numerical partitions.”  Read the first two sections, through the description of the Ferrers diagram.  Notice that the number of numerical partitions is also given by a recurrence equation, p(n,k) = p(n-1, k-1) + p(n-k,k).  Feel free to go to the page and experiment with a few.  However, fill in the rest of this section after lab.  
1. Notice that p(n,1) = 1 for each n.  Why is that?  ___________________________

_____________________________________________________________________

2. Also, p(n,n) = 1 for each n.  Why?  _______________________________________

_____________________________________________________________________
3. Now, using the recurrence relation and facts 1 and 2, find, by hand (showing your calculations) p(n,k) for all n < 3:

p(1,1)
p(2,1)

p(2,2)
p(3,1)
p(3,2)
p(3,3)
p(4,1)
p(4,2)
p(4,3)

p(4,4)
F. Go to the Amazing Mathematical Object Factory, http://theory.cs.uvic.ca/~cos/amof/.  Spend 3 minutes exploring it.  What advantages would it have for use with a class over the page you’ve been exploring?       _______________________________________

_____________________________________________________________________

G. The On-line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/, is an enormous table of sequences of integers, with information on their history, how to compute them, references to where more information about them can be found, etc.  This is not just combinatorical sequences:  any sequence you’ve ever seen is probably there.  Pick some sequence you know, go to this web site, type it in.  

1. What sequence did  you choose?  ___________________________________

2. What did it say about this sequence?
Some other on-line programs related to combinatorics include:

Partition calculator:  http://www.btinternet.com/~se16/js/partitions.htm  Calculates how many ways there are to partition (order doesn’t matter) a number n:  e.g., to partition 6, you could partition it into 1 + 1 + 1 + 1 + 1 + 1, or into 1 + 1+ 2 + 2, etc., and compositions (where order matters), and allows you to choose whether you want only those with distinct numbers in the partition, maximum size of numbers used, etc.

Rutgers has a whole research division, DIMACS, which is about Discrete Mathematics.  (I think the acronym is Discrete Mathematics and Computer Science.) There is some software on their site, LINK, for doing discrete mathematics, including graph theory, at http://dimacs.rutgers.edu/~berryj/LINK.html.  However, I haven’t gotten it to work yet.
