
����������	�
���
��
�
��	����
�������������������������
��������� 	���!
�"

�����#�$���"	�
�%����

�����	���&
����#�
	����'�(��	���)!*
+������'����
�,�
-.#������/���0�

Boundary Object Context is what Counts
Allen E. Milewski

Monmouth University
Department of Software Engineering

Monmouth University
West Long Branch, New Jersey

��������	�
��
�������

BACKGROUND�

Before recently returning to academics, I have
worked in the telecommunications Industry for
more than twenty years either as a Human-
Computer practitioner or as a Systems/Software
Engineer. During this time, all of my positions
have involved interdisciplinary teamwork, but in
three distinct categories. Each of these categories
has involved a different role and different
boundary-object favorites. Each has given me
insight about different aspects of the gaps that
exist between Human-Computer Interaction and
software practices.

• As a Usability Engineer in several focused,
tight-deadlined, product-oriented software
development organizations--- This product-
oriented experience involved the pragmatic
and commonplace HCI role of doing whatever
is necessary to form relationships with
software developers to get the product built on
schedule. The actual work on these teams
involved user-oriented design and evaluation,
and some software prototyping and
development. Example projects include (i) a
data network-management and maintenance
system and (ii) a trouble-monitoring system
for voice-communications equipment. As part
of large, structured organizations, the common
boundary objects typically included

o requirements documents (UI and
other),

o a project glossary, and

o user-interface-oriented modification
request (MRs).

o In one such organization, software
prototyping of the UI was a very
successful grassroots addition.

• As part of a Corporate-level Architecture
Group chartered with negotiating cross-
organization user-interface styles, standards
and practices as well as processes for

productizing emerging technologies-- This
role, being cross-organizational and somewhat
distant from product deadlines, permitted a
more analytic stance about improving the
working relationship between HCI and
software organizations. The work in this
group involved planning and process
implementation (and a great deal of what was
termed “electro-political-engineering”).
Example projects include: (i) corporate
standards and common software tool
architecture for network management system
user interface modules, and (ii) design of a
corporate-wide, C-language software library
for developing voice-response applications.
Official boundary objects included

o corporate standards and guidelines.

o However, there evolved an emphasis
on software toolkits as an effective
way to promulgate the standards.

• As part of a research organization tasked with
inventing revolutionary telecommunications
services and seeing them into the marketplace.
While the first two roles involved large
organizations, the research-team experience
involved small-group dynamics in an
environment with minimal management
direction. This work varied enormously,
involving UI design, software development
and project management as well as some
corporate-internal marketing/sales. Projects
include: (i) a Video Email system for thin-
clients with minimal storage capabilities , (ii)
a Web-based messaging system featuring
structured response objects such as meeting
announcements and invitations, and (iii) a
ubiquitous telephone address-book that
displays live presence information about those
persons listed in it. Favorite artifacts in this
small group setting were:

o A shared project blackboard (a real
blackboard)

����������	�
���
��
�
��	����
�������������������������
��������� 	���!
�"

�����#�$���"	�
�%����

�����	���&
����#�
	����'�(��	���)!*
+������'����
�,�
-.#������/���0�

o UI sketches

o Partially-working, software prototype

POSITION
Motivated by common need and significantly
intersecting tasks, the fields of Human-Computer
Interaction and Software Engineering have
evolved the effectiveness of their relationship.
However, improvements are still needed, as is
evidence by Kazman et al’s [2] survey reflecting
the current situation as Software Engineers and
HCI practitioners work together on projects in
Industry. In general, this survey has revealed a
marked schism between Software Engineers and
HCI practitioners. Despite working on overlapping
problems, they often differ in their perceptions of
collaboration amount, they often feel they work
separately, and they sometimes feel non-
collaboration to be an acceptable situation.

In a variety of environments, the concept of
Boundary Objects [4] has been a rich theoretical
vehicle for describing how it is that diverse
organizations come to cooperate productively.
Similarly, the Boundary Object notion is a useful
tool for conceptualizing the HCI-SE working
relationship. First, Boundary Objects serve as a
common point of reference and as a means of
translation between organizations. The emphasis
on objective artifacts puts constraints on the
collaboration that are needed in order to actually
deliver a product. Second, rather than melding
disciplines, Boundary Objects describe how a
common artifact can be useful to distinctly
separate organizations by maintaining different
“meanings” to each. Both [5] and [3] have argued
that combining Software Engineering and HCI into
a single discipline or role is unlikely to be
productive. For one thing, experience has shown
the utility of having a “user advocate”, semi-
separated from the schedule and budget demands
of the rest of the project. Third, Boundary Objects
are flexible enough to be useful under conditions
of rapid change. This is critical since both HCI and
SE fields place increasing emphasis on iterative
and continual redesign, development and testing.

While the Boundary Object is a useful concept to
describe how cooperation occurs, one has to be
cautious when relying on Boundary Objects as
anything more than descriptive. There is a stark
difference between saying that “organizations use
boundary objects to cooperate” and saying, “lets
use Boundary Objects to solve the schism between
HCI and SE organizations”. The prescriptive
version has two problems, and they both point to
the context of Boundary Objects, rather than the

objects themselves, as the essential element of
bridging between disciplines.

First, Boundary Objects as typically studied, are
working arrangements that evolve out of their
context of use rather than being engineered. For
example: “Objects become natural in a particular
community of practice over a long period of time.
It is not predetermined whether an object will ever
become naturalize, or how long it will remain so”,
[1], p299.). While recognizing the need for
“Boundary Infrastructures”- i.e. collections of
boundary objects whose use becomes
institutionalized, Boundary Objects, for the most
part, are not planned. I can muster anecdotes about
both successes and failures for each of my own
favorite Boundary Objects listed above. It is even
more difficult to understand what characteristics of
Boundary Objects predict their success. Are
Boundary Objects most successful when they are
small vs large, informal vs formal, inserted early
vs late, high vs. low fidelity? Does it matter if
management supports them or not? Are they best
owned by the HCI or SE staff? (in practice
artifacts are seldom shared in Industry). My
experience gives me no answers to these questions,
and without answers, we are limited in our
“bridging” efforts to creating a random grab bag of
objects that projects “might” want to try.

The second problem in attempting to use
Boundary Objects as a prescription is that their
success seems absolutely dependent on the
attitudes of the participants- the human-context of
the collaboration. While “Boundary objects arise
… from durable cooperation among communities
of practice” [1, p297, underlining mine], it is not
at all clear that using even the best of Boundary
objects improves cooperation unless participants’
attitudes towards cooperation is already positive.
In my experience, for example, while software
prototypes can be an extremely useful object in
“friendly” environments that are already
collaborative, they usually fail in large,
contentious projects that have not fostered a
cooperative attitude. The results of Kazman, et al
[2] would suggest that friction in Bridging
between HCI and SE stems from attitudinal
problems. And, while some preliminary evidence
may suggest that training can reduce these [3],
they are likely to remain a larger problem than that
of finding appropriate Boundary Objects.

In summary, while boundary objects are an
important vehicle for understanding how and to
what extent SE and HCI disciplines cooperate, we

����������	�
���
��
�
��	����
�������������������������
��������� 	���!
�"

�����#�$���"	�
�%����

�����	���&
����#�
	����'�(��	���)!*
+������'����
�,�
-.#������/���0�

should be cautious when relying on them as a
solution to bridging the fields.

��

[1] Bowker, G., and S.L. Star (1999), Sorting
Things Out: Classification and its Consequences.
MIT PRESS, 1999
[2] Kazman, R., Gunaratne, J. and Jerome, B..
Why Can’t Software Engineers and HCI
Practitioners Work Together? In J. Jacko and C.
Stephanidis (Eds.) Human-Computer Interaction:
Theory and Practice, Lawrence Erlbaum, Mahway,
NJ, 2003.

[3] Milewski, A.E. Software Engineers and HCI
Practitioners Learning to Work Together: A
Preliminary Look at Expectations. Paper Presented

at the 17th Conference on Software Engineering
Education and Training (CSEE&T 2004), Norfolk,
Virginia (USA), March 1-3, 2004

[4] Star, S.L., and J.R. Griesemer (1989),
"Institutional Ecology, 'Translations', and
Boundary Objects: Amateurs and Professionals in
Berkeley's Museum of Vertebrate Zoology 1907-
39", Social Studies of Science, Vol. 19.

[5] Walenstein, A. Finding Boundary Objects in
SE and HCI: An Approach Through Engineering-
oriented Design Theories, Workshop position
paper accepted at ICSE’03 - International
Conference on Software Engineering, May 3-11,
2003. Workshop on Bridging the Gaps Between
Software Engineering and Human-Computer
Interaction

�

�

�

�

�

�

�

�

